
Dissecting UbuntuOne:
Autopsy of a Global-scale Personal Cloud Back-end

Raúl Gracia-Tinedo
Universitat Rovira i Virgili

raul.gracia@urv.cat

Yongchao Tian
Eurecom

yongchao.tian@eurecom.fr

Josep Sampé
Universitat Rovira i Virgili

josep.sampe@urv.cat

Hamza Harkous
EPFL

hamza.harkous@epfl.ch

John Lenton
Canonical Ltd.

john.lenton@canonical.com

Pedro García-López
Universitat Rovira i Virgili

pedro.garcia@urv.cat

Marc Sánchez-Artigas
Universitat Rovira i Virgili

marc.sanchez@urv.cat

Marko Vukolić
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ABSTRACT

Personal Cloud services, such as Dropbox or Box, have been
widely adopted by users. Unfortunately, very little is known
about the internal operation and general characteristics of
Personal Clouds since they are proprietary services.
In this paper, we focus on understanding the nature of

Personal Clouds by presenting the internal structure and a
measurement study of UbuntuOne (U1). We first detail the
U1 architecture, core components involved in the U1 meta-
data service hosted in the datacenter of Canonical, as well
as the interactions of U1 with Amazon S3 to outsource data
storage. To our knowledge, this is the first research work to
describe the internals of a large-scale Personal Cloud.
Second, by means of tracing the U1 servers, we provide

an extensive analysis of its back-end activity for one month.
Our analysis includes the study of the storage workload, the
user behavior and the performance of the U1 metadata store.
Moreover, based on our analysis, we suggest improvements
to U1 that can also benefit similar Personal Cloud systems.
Finally, we contribute our dataset to the community, which

is the first to contain the back-end activity of a large-scale
Personal Cloud. We believe that our dataset provides unique
opportunities for extending research in the field.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques;
K.6.2 [Management of Computing and Information
Systems]: Installation management–Performance and us-
age measurement
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1. INTRODUCTION
Today, users require ubiquitous and transparent storage

to help handle, synchronize and manage their personal data.
In a recent report [1], Forrester research forecasts a market
of $12 billion in the US related to personal and user-centric
cloud services by 2016. In response to this demand, Personal
Clouds like Dropbox, Box and UbuntuOne (U1) have pro-
liferated and become increasingly popular, attracting com-
panies such as Google, Microsoft, Amazon or Apple to offer
their own integrated solutions in this field.

In a nutshell, a Personal Cloud service offers automatic
backup, file sync, sharing and remote accessibility across a
multitude of devices and operating systems. The popularity
of these services is based on their easy to use Software-as-a-
Service (SaaS) storage facade to ubiquitous Infrastructure-
as-a-Service (IaaS) providers like Amazon S3 and others.

Unfortunately, due to the proprietary nature of these sys-
tems, very little is known about their performance and char-
acteristics, including the workload they have to handle daily.
And indeed, the few available studies have to rely on the so-
called “black-box” approach, where traces are collected from
a single or a limited number of measurement points, in order
to infer their properties. This was the approach followed by
the most complete analysis of a Personal Cloud to date, the
measurement of Dropbox conducted by Drago et al. [2]. Al-
though this work describes the overall service architecture,
it provides no insights on the operation and infrastructure of
the Dropbox’s back-end. And also, it has the additional flaw
that it only focuses on small and specific communities, like
university campuses, which may breed false generalizations.

Similarly, several Personal Cloud services have been ex-
ternally probed to infer their operational aspects, such as
data reduction and management techniques [3, 4, 5], or even
transfer performance [6, 7]. However, from external vantage
points, it is impossible to fully understand the operation of
these systems without fully reverse-engineering them.

In this paper, we present results of our study of U1: the
Personal Cloud of Canonical, integrated by default in Linux
Ubuntu OS. Despite the shutdown of this service on July
2014, the distinguishing feature of our analysis is that it has
been conducted using data collected by the provider itself.
U1 provided service to 1.29 million users at the time of the
study on January-February 2014, which constitutes the first
complete analysis of the performance of a Personal Cloud in



UbuntuOne Analisys Finding Implications and Opportunities

Storage Workload (§ 5)

90% of files are smaller than 1MByte (P). Object storage services normally used as a cloud service
are not optimized for managing small files [8].

18.5% of the upload traffic is caused by file updates
(C).

Changes in file metadata cause high overhead since the
U1 client does not support delta updates (e.g. .mp3 tags).

We detected a deduplication ratio of 17% in one
month (C).

File-based cross-user deduplication provides an attrac-
tive trade-off between complexity and performance [5].

DDoS attacks against U1 are frequent (N). Further research is needed regarding secure protocols and
automatic countermeasures for Personal Clouds.

User Behavior (§ 6)
1% of users generate 65% of the traffic (P). Very active users may be treated in an optimized manner

to reduce storage costs.
Data management operations (e.g., uploads, file dele-
tions) are normally executed in long sequences (C).

This correlated behavior can be exploited by caching and
prefetching mechanisms in the server-side.

User operations are bursty; users transition between
long, idle periods and short, very active ones (N).

User behavior combined with the user per-shard data
model impacts the metadata back-end load balancing.

Back-end Performance (§ 7)

A 20-node database cluster provided service to 1.29M
users without symptoms of congestion (N).

The user-centric data model of a Personal Cloud makes
relational database clusters a simple yet effective ap-
proach to scale out metadata storage.

RPCs service time distributions accessing the meta-
data store exhibit long tails (N).

Several factors at hardware, OS and application-level are
responsible for poor tail latency in RPC servers [9].

In short time windows, load values of API servers/DB
shards are very far from the mean value (N).

Further research is needed to achieve better load balanc-
ing under this type of workload.

C: Confirms previous results, P: Partially aligned with previous observations, N: New observation

Table 1: Summary of some of our most important findings and their implications.

the wild. Such a unique data set has allowed us to reconfirm
results from prior studies, like that of Drago et al. [2], which
paves the way for a general characterization of these systems.
But it has also permitted us to expand the knowledge base
on these services, which now represent a considerable volume
of the Internet traffic. According to Drago et al. [2], the total
volume of Dropbox traffic accounted for a volume equivalent
to around one third of the YouTube traffic on a campus
network. We believe that the results of our study can be
useful for both researchers, ISPs and data center designers,
giving hints on how to anticipate the impact of the growing
adoption of these services. In summary, our contributions
are the following:

Back-end architecture and operation of U1. This
work provides a comprehensive description of the U1 ar-
chitecture, being the first one to also describe the back-end
infrastructure of a real-world vendor. Similarly to Dropbox
[2], U1 decouples the storage of file contents (data) and their
logical representation (metadata). Canonical only owns the
infrastructure for the metadata service, whereas the actual
file contents are stored separately in Amazon S3. Among
other insights, we found that U1 API servers are charac-
terized by long tail latencies and that a sharded database
cluster is an effective way of storing metadata in these sys-
tems. Interestingly, these issues may arise in other systems
that decouple data and metadata as U1 does [10].

Workload analysis and user behavior in U1. By trac-
ing the U1 servers in the Canonical datacenter, we provide
an extensive analysis of its back-end activity produced by the
active user population of U1 for one month (1.29M distinct
users). Our analysis confirms already reported facts, like
the execution of user operations in long sequences [2] and
the potential waste that file updates may induce in the sys-
tem [4, 5]. Moreover, we provide new observations, such as
a taxonomy of files in the system, the modeling of burstiness
in user operations or the detection of attacks to U1, among
others. Table 1 summarizes some of our key findings.

Potential improvements to Personal Clouds. We sug-
gest that a Personal Cloud should be aware of the behavior
of users to optimize its operation. Given that, we discuss
the implications of our findings to the operation of U1. For
instance, file updates in U1 were responsible for 18.5% of
upload traffic mainly due to the lack of delta updates in the
desktop client. Furthermore, we detected 3 DDoS attacks

in one month, which calls for further research in automatic
attack countermeasures in secure and dependable storage
protocols. Although our observations may not apply to all
existing services, we believe that our analysis can help to
improve the next generation of Personal Clouds [10, 4].

Publicly available dataset. We contribute our dataset
(758GB) to the community and it is available at http://
cloudspaces.eu/results/datasets. To our knowledge, this
is the first dataset that contains the back-end activity of
a large-scale Personal Cloud. We hope that our dataset
provides new opportunities to researchers in further under-
standing the internal operation of Personal Clouds, promot-
ing research and experimentation in this field.

Roadmap: The rest of the paper is organized as follows. § 2
provides basic background on Personal Clouds. We describe
in § 3 the details of the U1 Personal Cloud. In § 4 we
explain the trace collection methodology. In § 5, § 6 and
§ 7 we analyze the storage workload, user activity and back-
end performance of U1, respectively. § 8 discusses related
work. We discuss the implications of our insights and draw
conclusions in § 9.

2. BACKGROUND
A Personal Cloud can be loosely defined as a unified dig-

ital locker for users’ personal data, offering at least three
key services: file storage, synchronization and sharing [11].
Numerous services such as Dropbox, U1 and Box fall under
this definition.

From an architectural viewpoint, a Personal Cloud ex-
hibits a 3-tier architecture consisting of: (i) clients, (ii) syn-
chronization or metadata service and (iii) data store [2, 10].
Thus, these systems explicitly decouple the management of
file contents (data) and their logical representation (meta-
data). Companies like Dropbox and Canonical only own
the infrastructure for the metadata service, which processes
requests that affect the virtual organization of files in user
volumes. The contents of file transfers are stored separately
in Amazon S3. An advantage of this model is that the Per-
sonal Cloud can easily scale out storage capacity thanks to
the “pay-as-you-go” cloud payment model, avoiding costly
investments in storage resources.

In general, Personal Clouds provide clients with 3 main
types of access to their service: Web/mobile access, Repre-
sentational State Transfer (REST) APIs [7, 12] and desktop



API Operation Related RPC Description

ListVolumes dal.list_volumes This operation is normally performed at the beginning of a session and lists all the volumes of a user
(root, user-defined, shared).

ListShares dal.list_shares This operation lists all the volumes of a user that are of type shared. In this operation, ther field
shared by is the owner of the volume and shared to is the user to which that volume was shared with.
In this operation, the field shares represents the number of volumes type shared of this user.

(Put/Get)Content see appendix A These operations are the actual file uploads and downloads, respectively. The notification goes to the
U1 back-end but the actual data is stored in a separate service (Amazon S3). A special process is
created to forward the data to Amazon S3. Since the upload management in U1 is complex, we refer
the reader to appendix A for a description in depth of upload transfers.

Make dal.make_dir
dal.make_file

This operation is equivalent to a “touch” operation in the U1 back-end. Basically, it creates a file node
entry in the metadata store and normally precedes a file upload.

Unlink dal.unlink_node Delete a file or a directory from a volume.
Move dal.move Moves a file from one directory to another.
CreateUDF dal.create_udf Creates a user-defined volume.
DeleteVolume dal.delete_volume Deletes a volume and the contained nodes.
GetDelta dal.get_delta Get the differences between the server volume and the local one (generations).
Authenticate auth.get_user_id_

from_token
Operations managed by the servers to create sessions for users.

Table 2: Description of the most relevant U1 API operations.

clients. Our measurements in this paper focus on the desk-
top client interactions with U1. Personal Cloud desktop
clients are very popular among users since they provide au-
tomatic synchronization of user files across several devices
(see Section 3.3). To achieve this, desktop clients and the
server-side infrastructure communicate via a storage proto-
col. In most popular Personal Cloud services (e.g., Drop-
box), such protocols are proprietary.
U1 Personal Cloud was a suite of online services offered

by Canonical that enabled users to store and sync files on-
line and between computers, as well as to share files/folders
with others using file synchronization. Until the service was
discontinued in July 2014, U1 provided desktop and mobile
clients and a Web front-end. U1 was integrated with other
Ubuntu services, like Tomboy for notes and U1 Music Store
for music streaming.

3. THE U1 PERSONAL CLOUD
In this section, we first describe the U1 storage protocol

used for communication between clients and the server-side
infrastructure (Sec. 3.1). This will facilitate the understand-
ing of the system architecture (Sec. 3.2). We then discuss
the details of a U1 desktop client (Sec. 3.3). Finally, we
give details behind the core component of U1, its metadata
back-end (Sec. 3.4).

3.1 U1 Storage Protocol
U1 uses its own protocol (ubuntuone-storageprotocol)

based on TCP and Google Protocol Buffers1. In contrast to
most commercial solutions, the protocol specifications and
client-side implementation are publicly available2. Here, we
describe the protocol in the context of its entities and oper-
ations. Operations can be seen as end-user actions intended
to manage one/many entities, such as a file or a directory.

3.1.1 Protocol Entities

In the following, we define the main entities in the proto-
col. Note that in our analysis, we characterize and identify
the role of these entities in the operation of U1.

Node: Files and directories are nodes in U1. The protocol
supports CRUD operations on nodes (e.g. list, delete, etc.).
The protocol assigns Universal Unique Identifiers (UUIDs)
to both node objects and their contents, which are generated
in the back-end.

1
https://wiki.ubuntu.com/UbuntuOne

2
https://launchpad.net/ubuntuone-storage-protocol

Volume: A volume is a container of node objects. During
the installation of the U1 client, the client creates an initial
volume to store files with id=0 (root). There are 3 types of
volumes: i) root/predefined, ii) user defined folder (UDF),
which is a volume created by the user, and iii) shared (sub-
volume of another user to which the current user has access).

Session: The U1 desktop client establishes a TCP connec-
tion with the server and obtains U1 storage protocol ses-
sion (not HTTP or any other session type). This session is
used to identify a user’s requests during the session lifetime.
Usually, sessions do not expire automatically. A client may
disconnect, or a server process may go down, and that will
end the session. To create a new session, an OAuth [13]
token is used to authenticate clients against U1. Tokens
are stored separately in the Canonical authentication ser-
vice (see § 3.4.1).

3.1.2 API Operations

The U1 storage protocol offers an API consisting of the
data management and metadata operations that can be exe-
cuted by a client. Metadata operations are those operations
that do not involve transfers to/from the data store (i.e.,
Amazon S3), such as listing or deleting files, and are entirely
managed by the synchronization service. On the contrary,
uploads and downloads are, for instance, typical examples
of data management operations.

In Table 2 we describe the most important protocol oper-
ations between users and the server-side infrastructure. We
traced these operations to quantify the system’s workload
and the behavior of users.

3.2 Architecture Overview
As mentioned before, U1 has a 3-tier architecture consist-

ing of clients, synchronization service and the data/metadata
store. Similarly to Dropbox [2], U1 decouples the storage of
file contents (data) and their logical representation (meta-
data). Canonical only owns the infrastructure for the meta-
data service, which processes requests that affect the virtual
organization of files in user volumes. The actual contents of
file transfers are stored separately in Amazon S3.

However, U1 treats client requests differently from Drop-
box. Namely, Dropbox enables clients to send requests ei-
ther to the metadata or storage service depending on the
request type. Therefore, the Dropbox infrastructure only
processes metadata/control operations. The cloud storage
service manages data transfers, which are normally orches-
trated by computing instances (e.g. EC2).



In contrast, U1 receives both metadata requests and data
transfers of clients. Internally, the U1 service discriminates
client requests and contacts either the metadata store or
the storage service. For each upload and download request,
a new back-end process is instantiated to manage the data
transfer between the client and S3 (see appendix A). There-
fore, the U1 model is simpler from a design perspective, yet
this comes at the cost of delegating the responsibility of pro-
cessing data transfers to the metadata back-end.

U1 Operation Workflow. Imagine a user that initiates
the U1 desktop client (§ 3.3). At this point, the client sends
an Authenticate API call (see Table 2) to U1, in order to
establish a new session. An API server receives the request
and contacts to the Canonical authentication service to ver-
ify the validity of that client (§ 3.4.1). Once the client has
been authenticated, a persistent TCP connection is estab-
lished between the client and U1. Then, the client may send
other management requests on user files and directories.
To understand the synchronization workflow, let us as-

sume that two clients are online and work on a shared folder.
Then, a client sends an Unlink API call to delete a file from
the shared folder. Again, an API server receives this re-
quest, which is forwarded in form of RPC call to a RPC
server (§ 3.4). As we will see, RPC servers translate RPC
calls into database query statements to access the correct
metadata store shard (PostgreSQL cluster). Thus, the RPC
server deletes the entry for that file from the metadata store.
When the query finishes, the result is sent back from the

RPC server to the API server that responds to the client
that performed the request. Moreover, the API server that
handled the Unlink notifies the other API servers about this
event that, in turn, is detected by the API server to which
the second user is connected. This API server notifies via
push to the second client, which deletes that file locally. The
API server finishes by deleting the file also from Amazon S3.
Next, we describe in depth the different elements involved

in this example of operation: The desktop client, the U1
back-end infrastructure and other key back-end services to
the operation of U1 (authentication and notifications).

3.3 U1 Desktop Client
U1 provides a user friendly desktop client, implemented

in Python (GPLv3), with a graphical interface that enables
users to manage files. It runs a daemon in the background
that exposes a message bus (DBus) interface to handle events
in U1 folders and make server notifications visible to the user
through OS desktop. This daemon also does the work of de-
ciding what to synchronize and in which direction to do so.
By default, one folder labeled ∼/Ubuntu One/ is automat-

ically created and configured for mirroring (root volume)
during the client installation. Changes to this folder (and
any others added) are watched using inotify. Synchroniza-
tion metadata about directories being mirrored is stored in
∼/.cache/ubuntuone. When remote content changes, the
client acts on the incoming unsolicited notification (push)
sent by U1 service and starts the download. Push notifica-
tions are possible since clients establish a TCP connection
with the metadata service that remains open while online.
In terms of data management, Dropbox desktop clients

deduplicate data at chunk level [2]. In contrast, U1 resorts
to file-based cross-user deduplication to reduce the waste of
storing repeated files [5]. Thus, to detect duplicated files,
U1 desktop clients provide to the server the SHA-1 hash of
a file prior to the content upload. Subsequently, the system
checks if the file to be uploaded already exists or not. In the
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Figure 1: Architecture and workflow of U1 back-end.

affirmative case, the new file is logically linked to the existing
content, and the client does not need to transfer data.

Finally, as observed in [5], the U1 client applies com-
pression to uploaded files to optimize transfers. However,
the desktop client does not perform techniques such as file
bundling3, delta updates and sync deferment in order to
simplify its design, which may lead to inefficiencies.

3.4 U1 Metadata Back-end
The entire U1 back-end is all inside a single datacenter and

its objective is to manage the metadata service. The back-
end architecture appears in Fig. 1 and consists of metadata
servers (API/RPC), metadata store and data store.

System gateway. The gateway to the back-end servers is
the load balancer. The load balancer (HAProxy, ssl, etc.)
is the visible endpoint for users and it is composed of two
racked servers.

Metadata store. U1 stores metadata in a PostgreSQL
database cluster composed of 20 large Dell racked servers,
configured in 10 shards (master-slave). Internally, the sys-
tem routes operations by user identifier to the appropriate
shard. Thus, metadata of a user’s files and folders reside
always in the same shard. This data model effectively ex-
ploits sharding, since normally there is no need to lock more
than one shard per operation (i.e. lockless). Only opera-
tions related to shared files/folders may require to involve
more than one shard in the cluster.

API/RPC servers. Beyond the load balancer we find
the API and RPC database processes that run on 6 sepa-
rate racked servers. API servers receive commands from the
user, perform authentication, and translate the commands
into RPC calls. In turn, RPC database workers translate
these RPC calls into database queries and route queries to
the appropriate database shards. API/RPC processes are
more numerous than physical machines (normally 8 − 16
processes per physical machine), so that they can migrate
among machines for load balancing. Internally, API and
RPC servers, the load balancer and the metadata store are
connected though a switched 1Gbit Ethernet network.

Data storage. Like other popular Personal Clouds, such
as Dropbox or SugarSync, U1 stores user files in a separate
cloud service. Concretely, U1 resorts to Amazon S3 (us-
east) to store user data. This solution enables a service
to rapidly scale out without a heavy investment in storage
hardware. In its latests months of operation, U1 had a ≈
20, 000$ monthly bill in storage resources, being the most
important Amazon S3 client in Europe.

3Li et al. [5] suggest that U1 may group small files together
for upload (i.e. bundling), since they observed high efficiency
uploading sets of small files. However, U1 does not bundle
small files together. Instead, clients establish a TCP connec-
tion with the server that remains open during the session,
avoiding the overhead of creating new connections.



With this infrastructure, U1 provided service to 1.29 mil-
lion users traced in this measurement for one month.

3.4.1 Authentication Service

The authentication service of U1 is shared with other
Canonical services within the same datacenter and it is based
on OAuth [13]. The first time a user interacts with U1,
the desktop client requires him to introduce his credentials
(email, password). The API server that handles the au-
thentication request contacts the authentication service to
generate a new token for this client. The created token is as-
sociated in the authentication service with a new user iden-
tifier. The desktop client also stores this token locally in
order to avoid exposing user credentials in the future.
In the subsequent connections of that user, the authen-

tication procedure is easier. Basically, the desktop client
sends a connection request with the token to be authenti-
cated. The U1 API server responsible for that requests asks
the authentication service if the token does exist and has not
expired. In the affirmative case, the authentication service
retrieves the associated user identifier, and a new session is
established. During the session, the token of that client is
cached to avoid overloading the authentication service.
The authentication infrastructure consists of 1 database

server with hot failover and 2 application servers configured
with crossed stacks of Apache/Squid/HAProxy.

3.4.2 Notifications

Clients detect changes in their volumes by comparing their
local state with the server side on every connection (gener-
ation point). However, if two related clients are online and
their changes affect each other (e.g. updates to shares, new
shares), API servers notify them directly (push). To this
end, API servers resort to the TCP connection that clients
establish with U1 in every session.
Internally, the system needs a way of notifying changes to

API servers that are relevant to simultaneously connected
clients. Concretely, U1 resorts to RabbitMQ (1 server) for

communicating events between API servers4, which are sub-
scribed in the queue system to send and receive new events
to be communicated to clients.
Next, we describe our measurement methodology to create

the dataset used in our analysis.

4. DATA COLLECTION
We present a study of the U1 service back-end. In contrast

to other Personal Cloud measurements [2, 7, 5], we did not
deploy vantage points to analyze the service externally. In-
stead, we inspected directly the U1 metadata servers to mea-
sure the system. This has been done in collaboration with
Canonical in the context of the FP7 CloudSpaces5 project.
Canonical anonymized sensitive information to build the
trace (user ids, file names, etc.).
The traces are taken at both API and RPC server stages.

In the former stage we collected important information about
the storage workload and user behavior, whereas the second
stage provided us with valuable information about the re-
quests’ life-cycle and the metadata store performance.
We built the trace capturing a series of service logfiles.

Each logfile corresponds to the entire activity of a single

4If connected clients are handled by the same API process,
their notifications are sent immediately, i.e. there is no need
for inter-process communication with RabbitMQ.
5
http://cloudspaces.eu

Trace duration 30 days (01/11 - 02/10)
Trace size 758GB
Back-end servers traced 6 servers (all)
Unique user IDs 1, 294, 794
Unique files 137.63M
User sessions 42.5M
Transfer operations 194.3M
Total upload traffic 105TB
Total download traffic 120TB

Table 3: Summary of the trace.

API/RPC process in a machine for a period of time. Each
logfile is within itself strictly sequential and timestamped.
Thus, causal ordering is ensured for operations done for the
same user. However, the timestamp between servers is not
dependable, even though machines are synchronized with
NTP (clock drift may be in the order of ms).

To gain better understanding on this, consider a line in
the trace with this logname: production-whitecurrant-
23-20140128. They will all be production, because we only
looked at production servers. After that prefix is the name of
the physical machine (whitecurrant), followed by the num-
ber of the server process (23) and the date. The mapping be-
tween services and servers is dynamic within the time frame
of analyzed logs, since they can migrate between servers to
balance load. In any case, the identifier of the process is
unique within a machine. After that is the date the logfile
was “cut” (there is one log file per server/service and day).

Database sharding is in the metadata store back-end, so
it is behind the point where traces were taken. This means
that in these traces any combination of server/process can
handle any user. To have a strictly sequential notion of the
activity of a user we should take into account the U1 session
and sort the trace by timestamp (one session/connection per
desktop client). A session starts in the least loaded machine
and lives in the same node until it finishes, making user
events strictly sequential. Thanks to this information we
can estimate system and user service times.

Approximately 1% of traces are not analyzed due to fail-
ures parsing of the logs.

4.1 Dataset
The trace is the result of merging all the logfiles (758GB

of .csv text) of the U1 servers for 30 days (see Table 3).
The trace contains the API operations (request type stor-

age/storage_done) and their translation into RPC calls (re-
quest type rpc), as well as the session management of users
(request type session). This provides different sources of
valuable information. For instance, we can analyze the stor-
age workload supported by a real-world cloud service (users,
files, operations). Since we captured file properties such as
file size and hash, we can study the storage system in high
detail (contents are not disclosed).

Dataset limitations. The dataset only includes events
originating from desktop clients. Other sources of user re-
quests (e.g., the web front-end, mobile clients) are handled
by different software stacks that were not logged. Also, a
small number of apparently malfunctioning clients seems to
continuously upload files hundreds of times —these artifacts
have been removed for this analysis. Finally, we detected
that sharing among users is limited.

5. STORAGE WORKLOAD
First, we quantify the storage workload supported by U1

for one month. Moreover, we pay special attention to the
behavior of files in the system, to infer potential improve-
ments. We also unveil attacks perpetrated to the U1 service.
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Figure 2: Macroscopic storage workload metrics of U1.

5.1 Macroscopic Daily Usage
Storage traffic and operations. Fig. 2(a) provides

a time-series view of the upload/download traffic of U1 for
one week. We observe in Fig. 2(a) that U1 exhibits impor-
tant daily patterns. To wit, the volume of uploaded GBytes
per hour can be up to 10x higher in the central day hours
compared to the nights. This observation is aligned with
previous works, that detected time-based variability in both
the usage and performance of Personal Cloud services [2, 7].
This effect is probably related to the working habits of users,
since U1 desktop clients are by default initiated automati-
cally when users turn on their machines.
Another aspect to explore is the relationship between file

size and its impact in terms of upload/download traffic. To
do so, in Fig. 2(b), we depict in relative terms the fraction
of transferred data and storage operations for distinct file
sizes. As can be observed, a very small amount of large files
(> 25MBytes) consumes 79.3% and 88.2% of upload and
download traffic, respectively. Conversely, 84.3% and 89.0%
of upload and download operations are related to small files
(< 0.5MBytes). As reported in other domains [14, 15, 16],
we conclude that in U1 the workload in terms of storage op-
erations is dominated by small files, whereas a small number
of large files generate most of the network traffic.
For uploads, we found that 10.05% of total upload opera-

tions are updates, that is, an upload of an existing file that
has distinct hash/size. However, in terms of traffic, file up-
dates represent 18.47% of the U1 upload traffic. This can
be partly explained by the lack of delta updates in the U1
client and the heavy file-editing usage that many users ex-
hibited (e.g., code developers). Particularly for media files,
U1 engineers found that applications that modify the meta-
data of files (e.g., tagging .mp3 songs) induced high upload
traffic since the U1 client uploads again files upon metadata
changes, as they are interpreted as regular updates.
To summarize, Personal Clouds tend to exhibit daily traf-

fic patterns, and most of this traffic is caused by a small
number of large files. Moreover, desktop clients should effi-
ciently handle file updates to minimize traffic overhead.
R/W ratio. The read/write (R/W) ratio represents the

relationship between the downloaded and uploaded data in
the system for a certain period of time. Here we examine
the variability of the R/W ratio in U1 (1-hour bins). The
boxplot in Fig. 2(c) shows that the R/W ratio variability can
be important, exhibiting differences of 8x within the same
day. Moreover, the median (1.14) and mean (1.17) values of
the R/W ratio distribution point out that the U1 workload
is slightly read-dominated, but not as much as it has been
observed in Dropbox [2]. One of the reasons for this is that
the sharing activity in U1 was much lower than for Dropbox.
We also want to explore if the R/W ratios present patterns

or dependencies along time due to the working habits of
users. To verify whether R/W ratios are independent along
time, we calculated the autocorrelation function (ACF) for

each 1-hour sample (see Fig. 2(c)). To interpret Fig. 2(c), if
R/W ratios are completely uncorrelated, the sample ACF is
approximately normally distributed with mean 0 and vari-
ance 1/N , where N is the number of samples. The 95% con-

fidence limits for ACF can then be approximated to±2/
√
N .

As shown in Fig. 2(c), R/W ratios are not independent,
since most lags are outside 95% confidence intervals, which
indicates long-term correlation with alternating positive and
negative ACF trends. This evidences that the R/W ratios
of U1 workload are not random and follow a pattern also
guided by the working habits of users.

Concretely, averaging R/W ratios for the same hour along
the whole trace, we found that from 6am to 3pm the R/W
ratio shows a linear decay. This means that users download
more content when they start the U1 client, whereas uploads
are more frequent during the common working hours. For
evenings and nights we found no clear R/W ratio trends.

We conclude that different Personal Clouds may exhibit
disparate R/W ratios, mainly depending on the purpose and
strengths of the service (e.g., sharing, content distribution).
Moreover, R/W ratios exhibit patterns along time, which
can be predicted in the server-side to optimize the service.

5.2 File-based Workload Analysis
File operation dependencies. Essentially, in U1 a file

can be downloaded (or read) and uploaded (or written) mul-
tiple times, until it is eventually deleted. Next, we aim at
inspecting the dependencies among file operations [17, 18],
which can be RAW (Read-after-Write), WAW (Write-after-
Write) or DAW (Delete-after-Write). Analogously, we have
WAR, RAR and DAR for operations executed after a read.

First, we inspect file operations that occur after a write
(Fig. 3(a)). We see that WAW dependencies are the most
common ones (30.1% of 170.01M in total). This can be due
to the fact that users regularly update synchronized files, such
as documents of code files. This result is consistent with the
results in [17] for personal workstations where block updates
are common, but differs from other organizational storage
systems in which files are almost immutable [18]. Further-
more, the 80% of WAW times are shorter than 1 hour, which
seems reasonable since users may update a single text-like
file various times within a short time lapse.

In this sense, Fig. 3(a) shows that RAW dependencies
are also relevant. Two events can lead to this situation: (i)
the system synchronizes a file to another device right after
its creation, and (ii) downloads that occur after every file
update. For the latter case, reads after successive writes
can be optimized with sync deferment to reduce network
overhead caused by synchronizing intermediate versions to
multiple devices [5]. This has not been implemented in U1.

Second, we inspect the behavior of X-after-Read depen-
dencies (Fig. 3(b)). As a consequence of active update pat-
terns (i.e., write-to-write) and the absence of sync defer-
ment, we see in Fig. 3(b) that WAR transitions also occur
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Figure 3: Usage and behavior of files in U1.
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Figure 4: Characterization of files in U1.

within reduced time frames compared to other transitions.
Anyway, this dependency is the least popular one yielding
that files that are read tend not to be updated again.
In Fig. 3(b), 40% of RAR times fall within 1 day. RAR

times are shorter than the ones reported in [18], which can
motivate the introduction of caching mechanisms in the U1
back-end. Caching seems specially interesting observing the
inner plot of Fig. 3(b) that reveals a long tail in the distri-
butions of reads per file. This means that a small fraction
of files is very popular and may be effectively cached.
By inspecting the Delete-after-X dependencies, we de-

tected that around 12.5M files in U1 were completely unused
for more than 1 day before their deletion (9.1% of all files).
This simple observation on dying files evidences that warm
and/or cold data exists in a Personal Cloud, which may mo-
tivate the involvement of warm/cold data systems in these
services (e.g., Amazon Glacier, f4 [19]). To efficiently man-
aging warm files in these services is object of current work.
Node lifetime. Now we focus on the lifetime of user files

and directories (i.e., nodes). As shown in Fig. 3(c), 28.9%
of the new files and and 31.5% of the recently created direc-
tories are deleted within one month. We also note that the
lifetime distributions of files and directories are very similar,
which can be explained by the fact that deleting a directory
in U1 triggers the deletion of all the files it contains.
This figure also unveils that a large fraction of nodes are

deleted within a few hours after their creation, especially
for files. Concretely, users delete 17.1% of files and 12.9% of
directories within 8 hours after their creation time.
All in all, in U1 files exhibit similar lifetimes than files in

local file systems. For instance, Agrawal et al. in [15] ana-
lyzed the lifetimes of files in corporative desktop computers
for five years. They reported that around 20% to 30% of
files (depending on the year) in desktop computers present
a lifetime of one month, which agrees with our observations.
This suggests that users behave similarly deleting files either
in synchronized or local folders.

5.3 File Deduplication, Sizes and Types
File-based deduplication. The deduplication ratio (dr)

is a metric to quantify the proportion of duplicated data. It

takes real values in the interval [0, 1), with 0 signaling no file
deduplication at all, and 1 meaning full deduplication. It is
expressed as dr = 1 − (Dunique/Dtotal), where Dunique is
the amount of unique data, and Dtotal is equal to the total
storage consumption.

We detected a dr of 0.171, meaning that 17% of files’ data
in the trace can be deduplicated, which is similar (18%) to
that given by the recent work of Li et al. [5]. This suggests
that file-based cross-user deduplication could be a practical
approach to reduce storage costs in U1.

Moreover, Fig. 4(a) demonstrates that the distribution of
file objects w.r.t unique contents exhibits a long tail. This
means that a small number of files accounts for a very large
number of duplicates (e.g., popular songs), whereas 80% files
present no duplicates. Hence, files with many duplicates
represent a hot spot for the deduplication system, since a
large number of logical links point to a single content.

File size distribution. The inner plot of Fig. 4(b) il-
lustrates the file size distribution of transferred files in the
system. At first glance, we realize that the vast majority of
files are small [14, 15, 16]. To wit, 90% of files are smaller
than 1MByte. In our view, this can have important impli-
cations on the performance of the back-end storage system.
The reason is that Personal Clouds like U1 use object stor-
age services offered by cloud providers as data store, which
has not been designed for storing very small files [8].

In this sense, Fig. 4(b) shows the file size distribution of
the most popular file extensions in U1. Non-surprisingly, the
distributions are very disparate, which can be used to model
realistic workloads in Personal Cloud benchmarks [3]. It is
worth noting that in general, incompressible files like zipped
files or compressed media are larger than compressible files
(docs, code). This observation indicates that compressing
files does not provide much benefits in many cases.

File types: number vs storage space. We classi-
fied files belonging to the 55 most popular file extensions
into 7 categories: Pics (.jpg, .png, .gif, etc.), Code (.php,
.c, .js, etc.), Docs (.pdf, .txt, .doc, etc.), Audio/Video
(.mp3, .wav, .ogg, etc.), Application/Binary (.o, .msf, .jar,
etc.) and Compressed (.gz, .zip, etc.). Then, for each cat-
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Figure 5: DDoS attacks detected in our trace.

egory, we calculated the ratio of the number of files to the
total in the system. We did the same for the storage space.
This captures the relative importance of each content type.
Fig. 4(c) reveals that Audio/Video category is one of the

most relevant types of files regarding the share of consumed
storage, despite the fraction of files belonging to this class
is low. The reason is that U1 users stored .mp3 files, which
are usually larger than other popular text-based file types.
Further, the Code category contains the highest fraction

of files, indicating that many U1 users are code developers
who frequently update such files, despite the storage space
required for this category is minimal. Docs are also popular
(10.1%), subject to updates and hold 6.9% of the storage
share. Since the U1 desktop client lacks delta updates and
deferred sync, such frequent updates pose a high stress for
desktop clients and induce significant network overhead [5].

5.4 DDoS and Abuse of Personal Clouds
A Distributed Denial of Service (DDoS) can be defined as

the attempt to disrupt the legitimate use of a service [20].
Normally, a DDoS attack is normally accompanied by some
form of fraudulent resource consumption in the victim’s side.
Surprisingly, we found that DDoS attacks to U1 are more

frequent than one can reasonably expect. Specifically, we
found evidence of three such attacks in our traces (January

15, 16 and February 6)6. These DDoS attacks had as objec-
tive to share illegal content through the U1 infrastructure.
As visible in Fig. 5, all the attacks resulted in a dramatic

increase of the number of session and authentication requests
per hour —both events related to the management of user
sessions. Actually, the authentication activity under attack
was 5 to 15 times higher than usual, which directly impacts
the Canonical’s authentication subsystem.
The situation for API servers was even worse: during the

second attack (01/16) API servers received an activity 245x
higher than usual, whereas during the first (01/15) and last
(02/06) attacks the activity was 4.6x and 6.7x higher than
normal, respectively. Therefore, the most affected compo-
nents were the API servers, as they serviced both session
and storage operations.
We found that these attacks consisted on sharing a single

user id and its credentials to distribute content across thou-
sands of desktop clients. The nature of this attack is similar
to the storage leeching problem reported in [12], which con-
sists of exploiting the freemium business model of Personal
Clouds to illicitly consume bandwidth and storage resources.
Also, the reaction to these attacks was not automatic.

U1 engineers manually handled DDoS by means of deleting
fraudulent users and the content to be shared. This can
be easily seen on the storage activity for the second and

6Our interviews with Canonical engineers confirmed that
these activity spikes correspond to DDoS attacks, instead of
a software release or any other legitimate event.
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Figure 6: Online vs active users per hour.

third attack, which decays within one hour after engineers
detected and responded to the attack.

These observations confirm that Personal Clouds are a
suitable target for attack as other Internet systems, and that
these situations are indeed common. We believe that further
research is needed to build and apply secure storage proto-
cols to these systems, as well as new countermeasures to
automatically react to this kind of threats.

6. UNDERSTANDING USER BEHAVIOR
Understanding the behavior of users is a key source of

information to optimize large-scale systems. This section
provides several insights about the behavior of users in U1.

6.1 Distinguishing Online from Active Users
Online and active users. We consider a user as online

if his desktop client exhibits any form of interaction with the
server. This includes automatic client requests involved in
maintenance or notification tasks, for which the user is not
responsible for. Moreover, we consider a user as active if he
performs data management operations on his volumes, such
as uploading a file or creating a new directory.

Fig. 6 offers a time-series view of the number of online
and active users in the system per hour. Clearly, online
users are more numerous than active users: The percentage
of active users ranges from 3.49% to 16.25% at any moment
in the trace. This observation reveals that the actual storage
workload that U1 supports is light compared to the potential
usage of its user population, and gives a sense on the scale
and costs of these services with respect to their popularity.

Frequency of user operations. Here we examine how
frequent the protocol operations are in order to identify the
hottest ones. Fig. 7(a) depicts the absolute number of each
operation type. As shown in this figure, the most frequent
operations correspond to data management operations, and
in particular, those operations that relate to the download,
upload and deletion of files.

Given that active users are a minority, it proves that the
U1 protocol does not imposes high overhead to the server-
side, since the operations that users issue to manage their
sessions and are typically part of the session start up (e.g.,
ListVolumes) are not dominant. And consequently, the ma-
jor part of the processing burden comes from active users as
desired. This is essentially explained by the fact that the
U1 desktop client does not need to regularly poll the server
during idle times, thereby limiting the number of requests
not linked to data management.

As we will see in § 7, the frequency of API operations will
have an immediate impact on the back-end performance.

Traffic distribution across users. Now, we turn our
attention to the distribution of consumed traffic across users.
In Fig. 7(b) we observe an interesting fact: in one month,
only 14% of users downloaded data from U1, while uploads
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Figure 7: User requests and consumed traffic in U1 for one month.
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represented 25%. This indicates that a minority of users are
responsible for the storage workload of U1.
To better understand this, we measure how (un)equal the

traffic distribution across active users is. To do so, we resort
to the Lorenz curve and the Gini coefficient7 as indicators
of inequality. The Gini coefficient varies between 0, which
reflects complete equality, and 1, which indicates complete
inequality (i.e., only one user consumes all the traffic). The
Lorenz curve plots the proportion of the total income of
the population (y axis) that is cumulatively earned by the
bottom x% of the population. The line at 45 degrees thus
represents perfect equality of incomes.
Fig. 7(c) reports that the consumed traffic across active

users is very unequal. That is, the Lorenz curve is very far
from the diagonal line and the Gini coefficient is close to 1.
The reason for this inequality is clear: 1% of active users ac-
count for the 65.6% of the total traffic (147.52TB). Providers
may benefit from this fact by identifying and treating these
users more efficiently.
Types of user activity. To study the activity of users,

we used the same user classification than Drago et al. in [2].
So we distinguished among occasional, download/upload only
and heavy users. A user is occasional if he transfers less than
10KB of data. Users that exhibit more than three orders of
magnitude of difference between upload and download (e.g.,
1GB versus 1MB) traffic are classified as either download-
only or upload-only. The rest of users are in the heavy group.
Given that, we found that 85.82% of all users are oc-

casional (mainly online users), 7.22% upload-only, 2.34%

7
http://en.wikipedia.org/wiki/Gini_coefficient

download-only and 4.62% are heavy users. Our results clearly
differ from the ones reported in [2], where users are 30%
occasional, 7% upload-only, 26% download-only and 37%
heavy. This may be explained by two reasons: (i) the usage
of Dropbox is more extensive than the usage of U1, and (ii)
users in a university campus are more active and share more
files than other user types captured in our trace.

6.2 Characterizing User Interactions
User-centric request graph. To analyze how users in-

teract with U1, Fig. 8 shows the sequence of operations
that desktop clients issue to the server in form of a graph.
Nodes represent the different protocol operations executed.
And edges describe the transitions from one operation to
another. The width of edges denotes the global frequency of
a given transition. Note that this graph is user-centric, as
it aggregates the different sequence of commands that every
user executes, not the sequence of operations as they arrive
to the metadata service.

Interestingly, we found that the repetition of certain oper-
ations becomes really frequent across clients. For instance,
it is highly probable that when a client transfers a file, the
next operation that he will issue is also another transfer
—either upload or download. This phenomenon can be par-
tially explained by the fact that many times users synchro-
nize data at directory granularity, which involves repeating
several data management operations in cascade. File editing
can be also a source of recurrent transfer operations. This
behavior can be exploited by predictive data management
techniques in the server side (e.g., download prefetching).

Other sequences of operations are also highlighted in the
graph. For instance, once a user is authenticated, he usually
performs a ListVolumes and ListShares operations. This
is a regular initialization flow for desktop clients. We also
observe that Make and Upload operations are quite mixed,
evidencing that for uploading a file the client first needs to
create the metadata entry for this file in U1.

Burstiness in user operations. Next, we analyze inter-
arrival times between consecutive operations of the same
user. We want to verify whether inter-operation times are
Poisson or not, which may have important implications to
the back-end performance. To this end, we followed the
same methodology proposed in [21, 22], and obtained a time-
series view of Unlink and Upload inter-operation times and
their approximation to a power-law distribution in Fig. 9.

Fig. 9(a) exhibits large spikes for both Unlink and Up-
load operations, corresponding to very long inter-operation
times. This is far from an exponential distribution, where
long inter-operation times are negligible. This shows that
the interactions of users with U1 are not Poisson [21].

Now, we study if the Unlink and Upload inter-operation
times exhibit high variance, which indicates burstiness. In
all cases, while not strictly linear, these distributions show a
downward trend over almost six orders of magnitude. This
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Figure 9: Time-series user operations inter-arrival
times and their approximation to a power-law.

suggests that high variance of user inter-arrival operations is
present in time scales ranging from seconds to several hours.
Hence, users issue requests in a bursty non-Poisson way :
during a short period a user sends several operations in quick
succession, followed by long periods of inactivity. A possible
explanation to this is that users manage data at the directory
granularity, thereby triggering multiples operations to keep
the files inside each directory in sync.
Nevertheless, we cannot confirm the hypothesis that these

distributions are heavy-tailed. Clearly, Fig. 9(b) visually
confirms that the empirical distributions of user Unlink and
Upload inter-arrivals can be only approximated with P (x) ≈
x−α, ∀x > θ, 1 < α < 2, for a central region of the domain.
We also found that metadata operations follow more closely

a power-law distribution than data operations. The reason is
that the behavior of metadata inter-operation times are not
affected by the actual data transfers.
In conclusion, we can see that user operations are bursty,

which has strong implications to the operation of the back-
end servers (§ 7).

6.3 Inspecting User Volumes
Volume contents. Fig. 10 illustrates the relationship

between files and directories within user volumes. As usual,
files are much more numerous than directories. And we have
that over 60% of volumes have been associated with at least
one file. For directories, this percentage is only of 32%, but
there is a strong correlation between the number of files and
directories within a volume: Pearson correlation coefficient
is 0.998. What is relevant is, however, that a small fraction
of volumes is heavy loaded: 5% of user volumes contain more
than 1, 000 files.
Shared and user-defined volumes. At this point, we

study the distribution of user-defined/shared volumes across
users. As pointed out by Canonical engineers, sharing is not
a popular feature of U1. Fig. 11 shows that only 1.8% of
users exhibits at least one shared volume. On the contrary,
we observe that user-defined volumes are much more popu-
lar; we detected user-defined volumes in 58% of users —the
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Figure 10: Files and directories per volume.

10
0

10
1

10
2

0.4

0.6

0.8

1
UDF Volumes

Volumes

C
D

F

10
0

10
1

10
2

0.98

0.985

0.99

0.995

1
Shared Volumes

Volumes

C
D

F

Figure 11: Distribution of shared/user-defined vol-
umes across users.

rest of users only use the root volume. This shows that the
majority of users have some degree of expertise using U1.

Overall, these observations reveal that U1 was used more
as a storage service rather than for collaborative work.

7. METADATA BACK-END ANALYSIS
In this section, we focus on the interactions of RPC servers

against the metadata store. We also quantify the role of the
Canonical authentication service in U1.

7.1 Performance of Metadata Operations
Here we analyze the performance of RPC operations that

involve contacting the metadata store.
Fig. 12 illustrates the distribution of service times of the

different RPC operations. As shown in the figure, all RPCs
exhibit long tails of service time distributions: from 7% to
22% of RPC service times are very far from the median
value. This issue can be caused by several factors, ranging
from interference of background processes to CPU power
saving mechanisms, as recently argued by Li et al. in [9].

Also useful is to understand the relationship between the
service time and the frequency of each RPC operation. Fig.
13 presents a scatter plot relating RPC median service times
with their frequency, depending upon whether RPCs are of
type read, write/update/delete or cascade, i.e., whether other
operations are involved. This figure confirms that the type of
an RPC strongly determines its performance. First, cascade
operations (delete_volume and get_from_scratch) are the
slowest type of RPC —more than one order of magnitude
slower compared to the fastest operation. Fortunately, they
are relatively infrequent. Conversely, read RPCs, such as
list_volumes, are the fastest ones. Basically, this is because
read RPCs can exploit lockless and parallel access to the
pairs of servers that form database shards.

Write/update/delete operations (e.g. make_content, or
make_file) are slower than most read operations, but ex-
hibiting comparable frequencies. This may represent a per-
formance barrier for the metadata store in scenarios where
users massively update metadata in their volumes or files.
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Figure 12: Distribution of RPC service times accessing to the metadata store.
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single RPC call. We show the median service time
vs frequency of each RPC (1 month).

7.2 Load Balancing in U1 Back-end
We are interested in analyzing the internal load balancing

of both API servers and shards in the metadata store. In
the former case, we grouped the processed API operations
by physical machine. In the latter, we distributed the RPC
calls contacting the metadata store across 10 shards based
on the user id, as U1 actually does. Results appear in Fig.
14, where bars are mean load values and error lines represent
the standard deviation of load values across API servers and
shards per hour and minute, respectively.
Fig. 14 shows that server load presents a high variance

across servers, which is symptom of bad load balancing.
This effect is present irrespective of the hour of the day
and is more accentuated for the metadata store, for which
the time granularity used is smaller. Thus, this phenomenon
is visible in short or moderate periods of time. In the long
term, the load balancing is adequate; the standard deviation
across shards is only of 4.9% when the whole trace is taken.
Three particularities should be understood to explain the

poor load balancing. First, user load is uneven, i.e., a small
fraction of users is very active whereas most of them present
low activity. Second, the cost of operations is asymmetric;
for instance, there are metadata operations whose median
service time is 10x higher than others. Third, users display
a bursty behavior when interacting with the servers; for in-
stance, they can synchronize an entire folder. So, operations
arrive in a correlated manner.
We conclude that the load balancing in the U1 back-end

can be significantly improved, which is object of future work.

7.3 Authentication Activity & User Sessions
Time-series analysis. Users accessing the U1 service

should be authenticated prior to the establishment of a new
session. To this end, U1 API servers communicate with a
separate and shared authentication service of Canonical.
Fig. 15 depicts a time-series view of the session manage-

ment load that API servers support to create and destroy
sessions, along with the corresponding activity of the au-
thentication subsystem. In this figure, we clearly observe
that the authentication and session management activity is
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Figure 14: Load balancing of U1 API servers and
metadata store shards.

closely related to the habits of users. In fact, daily pat-
terns are evident. The authentication activity is 50% to 60%
higher in the central hours of the day than during the night
periods. This observation is also valid for week periods: on
average, the maximum number of authentication requests is
15% higher on Mondays than on weekends. Moreover, we
found that 2.76% of user authentication requests from API
servers to the authentication service fail.

Session length. Upon a successful authentication pro-
cess, a user’s desktop client creates a new U1 session.

U1 sessions exhibit a similar behavior to Dropbox home
users in [2] (Fig. 15). Concretely, 97% of sessions are shorter
than 8 hours, which suggests a strong correlation with user
working habits. Moreover, we also found that U1 exhibits
a high fraction of very short-lived sessions (i.e. 32% shorter
than 1s.). This is probably due to the operation of NAT and
firewalls that normally mediate between clients and servers,
which might be forcing the creation of new sessions by clos-
ing TCP connections unexpectedly [2, 23]. Overall, Fig. 15
suggests that domestic users are more representative than
other specific profiles, such as university communities, for
describing the connection habits of an entire Personal Cloud
user population.

We are also interested in understanding the data man-
agement activity related to U1 sessions. To this end, we
differentiate sessions that exhibited any type of data man-
agement operation (e.g., upload) during their lifetime (active
sessions) from sessions that do not (cold sessions).

First, we observed that the majority of U1 sessions (and,
therefore, TCP connections) do not involve any type of data
management. That is, only 5.57% of connections in U1 are
active (2.37M out of 42.5M), which, in turn, tend to be much
longer than cold ones. From a back-end perspective, the
unintended consequence is that a fraction of server resources
is wasted keeping alive TCP connections of cold sessions.
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Figure 16: Distribution of session lengths and stor-
age operations per session.

Moreover, similarly to the distribution of user activity, the
inner plot of Fig. 15 shows that 80% of active sessions exhib-
ited at most 92 storage operations, whereas the remaining
20% accounted for 96.7% of all data management operations.
Therefore, the are sessions much more active than others.
A provider may benefit from these observations to opti-

mize session management. That is, depending on a user’s
activity, the provider may wisely decide if a desktop client
works in a pull (cold sessions) or push (active sessions) fash-
ion to limit the number of open TCP connections [24].

8. RELATED WORK
The performance evaluation of cloud storage services is an

interesting topic inspiring several recent papers. Hill et al.
in [25] provide a quantitative analysis of the performance of
the Windows Azure Platform, including storage. Palankar
et al. in [26] perform an extensive measurement against
Amazon S3 to elucidate whether cloud storage is suitable
for scientific Grids. Similarly, [27] presents a performance
analysis of the Amazon Web Services. Liu et. al. [18] in-
spected in depth the workload patterns of users in the con-
text of a storage system within a university campus. This
work concentrates on macroscopic storage workload metrics
and type of requests, as well as the differences in access pat-
terns of personal and shared folders. Unfortunately, these
papers provide no insights into Personal Clouds.
Perhaps surprisingly, despite their commercial popularity,

only few research works have turned attention to analyze
the performance of Personal Cloud storage services [2, 3, 5,
6, 7, 12, 28, 29]. We classify them into two categories:
Active measurements. The first analysis of Personal

Cloud storage services we are aware is due to Hu et al. [6]
that compared Dropbox, Mozy, Carbonite and CrashPlan
storage services. However, their analysis was rather incom-
plete; the metrics provided in [6] are only backup/restore

times depending on several types of backup contents. They
also discuss potential privacy and security issues compar-
ing these vendors. The work of Hu et al. [6] was comple-
mented by Gracia-Tinedo et al. [7] that extensively studied
the REST interfaces provided by three big players in the
Personal Cloud arena, analyzing important aspects of their
QoS and potential exploitability [12].

Recently, Drago et al. [3] presented a complete framework
to benchmark Personal Cloud desktop clients. One of their
valuable contributions is to set a benchmarking framework
addressed to compare the different data reduction techniques
implemented in desktop clients (e.g, file bundling).

Passive measurements. Drago et al. [2] presented an
external measurement of Dropbox in both a university cam-
pus and residential networks. They analyzed and character-
ized the traffic generated by users, as well as the workflow
and architecture of the service. [29] extended that measure-
ment by modeling the behavior of Dropbox users. Similarly,
Mager et al. [28] uncovered the architecture and data man-
agement of Wuala, a peer-assisted Personal Cloud.

Unfortunately, these works do not provide insights on the
provider’s metadata back-end, since this is not possible from
external vantage points. Moreover, [2, 29] study the storage
workload and user behavior on specific communities (e.g.,
university campus) that may lead to false generalizations.
In contrast, we analyze the entire population of U1.

Furthermore, Li et al. [5] analyzed a group of Personal
Cloud users in both university and corporate environments.
Combined with numerous experiments, they studied the effi-
ciency of file sync protocols, as well as the interplay between
data reduction techniques integrated in desktop clients and
users’ workload (update frequency, file compressibility).

Key differences with prior work. The main difference
with previous works is that we study in details the metadata
back-end servers of a Personal Cloud, instead of simply mea-
suring it from outside. The unique aspect of our work is that
most of our insights could have been obtained only by tak-
ing a perspective from within a data center; this goes, for
example, for the internal infrastructure of the service, or the
performance of the metadata store, to name a few.

Also, apart from guiding simulations and experiments, we
believe that the present analysis will help researchers to op-
timize several aspects of these services, such as file synchro-
nization [4, 10] and security [30], among others.

9. DISCUSSION AND CONCLUSIONS
In this paper, we focus on understanding the nature of

Personal Cloud services by presenting the internal structure
and measurement study of UbuntuOne (U1). The objec-
tives of our work are threefold: (i) to unveil the internal
operation and infrastructure of a real-world provider, (ii) to
reconfirm, expand and contribute observations on these sys-
tems to generalize their characteristics, and (iii) to propose
potential improvements for these systems.

This work unveils several aspects that U1 shares with
other large-scale Personal Clouds. For instance, U1 presents
clear similarities with Dropbox regarding the way of decou-
pling data and metadata of users, which seems to be a stan-
dard design for these systems [10]. Also, we found charac-
teristics in the U1 workload that reconfirm observations of
prior works [2, 5] regarding the relevance of file updates, the
effectiveness of deduplication or the execution of user opera-
tions in long sequences, among other aspects. Therefore, our
analysis and the resulting dataset will enable researchers to
get closer to the nature of a real-world Personal Cloud.



Thanks to the scale and back-end perspective of our study,
we expanded and contributed insights on these services. That
is, we observed that the distribution of activity across users
in U1 is even more skewed than in Dropbox [2] or that the
behavior of domestic users dominate session lengths in U1
compared to other user types (e.g., university). Among the
novelties of this work, we modeled the burstiness of user op-
erations, we analyzed the behavior of files in U1, we provided
evidences of DDoS attacks to this service, and we illustrated
the performance of the U1 metadata back-end.
An orthogonal conclusion that we extract from our study

is that understanding the behavior of users is essential to
adapt the system to its actual demands and reduce costs. In
the following, we relate some of our insights to the running
costs of U1 as well as potential optimizations, which may be
of independent interest for other large-scale systems:

Optimizing storage matters. A key problem to the survival
of U1 was the growing costs of outsourcing data storage [31],
which is directly related to the data management techniques
integrated in the system. For instance, the fact that file
updates were responsible for 18.5% of upload traffic in U1,
mainly due to the lack of delta updates in the desktop client,
gives an idea of the margin of improvement (§ 5.1). Actually,
we confirmed that a simple optimization like file-based dedu-
plication could readily save 17% of the storage costs. This
calls to further research and the application of advanced data
reduction techniques, both at the client and server sides.

Take care of user activity. This observation is actually very
important, as we found that 1% of U1 users generated 65% of
traffic (§ 6.1), showing a weak form of the Pareto Principle.
That is, a very small fraction of the users represented most
of the OPEX for U1. A natural response may be to limit the
activity of free accounts, or at least to treat active users in
a more cost effective way. For instance, distributed caching
systems like Memcached, data prefetching techniques, and
advanced sync deferment techniques [5] could easily cut the
operational costs down. On the other hand, U1 may bene-
fit from cold/warm storage services (e.g., Amazon Glacier,
f4 [19]) to limit the costs related to most inactive users.

Security is a big concern. Another source of expense for a
Personal Cloud is related to its exploitation by malicious
parties. In fact, we found that DDoS attacks aimed at shar-
ing illegal content via U1 are indeed frequent (§ 5.4).The
risk that these attacks represent to U1 is in contrast to the
limited automation of its countermeasures. We believe that
further research is needed to integrate secure storage proto-
cols and automated countermeasures for Personal Clouds. In
fact, understanding the common behavior of users in a Per-
sonal Cloud (e.g., storage, content distribution) may provide
clues to automatically detect anomalous activities.
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APPENDIX

A. UPLOAD MANAGEMENT IN U1
The management of file uploads is one of the most complex

parts in the U1 architecture8. Specifically, U1 resorts to the
multipart upload API offered by Amazon S39. The lifecycle

8Downloads are simpler: API servers only perform a single
request to Amazon S3 for forwarding the data to the client.
9
http://docs.aws.amazon.com/AmazonS3/latest/dev/
UsingRESTAPImpUpload.html

Figure 17: Upload state machine in U1.

of an upload is closely related to this API, where several U1
RPC calls are involved (see Table 4).

Internally, U1 uses a persistent data structure called up-
loadjob that keeps the state of a multipart file transfer be-
tween the client and Amazon S3. The main objective of
multipart uploads in U1 is to provide user with a way of
interrupting/resuming large upload data transfers. upload-
job data structures are stored in the metadata store during
their life-cycle. RPC operations during the multipart upload
process guide the lifecycle of uploadjobs (see Fig. 17).

Upon the reception of an upload request, U1 first checks
if the file content is already stored in the service, by means
of a SHA-1 hash sent by the user. If deduplication is not
applicable to the new file, a new upload begins. The API
server that handles the upload sends an RPC to create an
entry for the new file in the metadata store.

In the case of a multipart upload, the API server creates a
new uploadjob data structure to track the process. Subse-
quently, the API process requests a multipart id to Amazon
S3 that will identify the current upload until its termination.
Once the id is assigned to the uploadjob, the API server up-
loads to Amazon S3 the chunks of the file transferred by the
user (5MB), updating the state of the uploadjob.

When the upload finishes, the API server deletes the up-
loadjob data structure from the metadata store and notifies
Amazon S3 about the completion of the transfer.

Finally, U1 also executes a periodic garbage-collection pro-
cess on uploadjob data structures. U1 checks if an upload-
job is older than one week (dal.touch_uploadjob). In the
affirmative case, U1 assumes that the user has canceled this
multipart upload permanently and proceeds to delete the
associated uploadjob from the metadata store.


