
Refined Quorum Systems

Rachid Guerraoui1 and Marko Vukolić2

1 School of Computer and Communication Sciences, EPFL
2 IBM Research - Zurich

rachid.guerraoui@epfl.ch, mvu@zurich.ibm.com

Abstract. It is considered good distributed computing practice to devise object implementations that
tolerate contention, periods of asynchrony and a large number of failures, but perform fast if few
failures occur, the system is synchronous and there is no contention. This paper initiates the first study
of quorum systems that help design such implementations by encompassing, at the same time, optimal
resilience, as well as optimal best-case complexity.
We introduce the notion of a refined quorum system (RQS) of some set S as a set of three classes
of subsets (quorums) of S: first class quorums are also second class quorums, themselves being also
third class quorums. First class quorums have large intersections with all other quorums, second class
quorums typically have smaller intersections with those of the third class, the latter simply correspond
to traditional quorums. Intuitively, under uncontended and synchronous conditions, a distributed object
implementation would expedite an operation if a quorum of the first class is accessed, then degrade
gracefully depending on whether a quorum of the second or the third class is accessed. Our notion
of refined quorum system is devised assuming a general adversary structure, and this basically allows
algorithms relying on refined quorum systems to relax the assumption of independent process failures,
often questioned in practice.
We illustrate the power of refined quorums by introducing two new optimal Byzantine-resilient dis-
tributed object implementations: an atomic storage and a consensus algorithm. Both match previously
established resilience and best-case complexity lower bounds, closing open gaps, as well as new complex-
ity bounds we establish here. Each of our algorithms is representative of a different class of architectures,
highlighting the generality of the refined quorum abstraction.

Keywords: Quorums, Consensus, Complexity, Shared-memory emulations, Byzantine failures.

Contact author: Marko Vukolić
Address: IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
Tel: +41-44-724-8715

? Elements of this paper appeared in a paper with the same title in the Proceedings of the 26th ACM Symposium

on Principles of Distributed Computing (PODC’07).

1 Introduction

1.1 Background

Quorum systems are powerful mathematical tools to reason about distributed implementations
shared objects, in particular read/write storage (e.g., [4, 27, 40]) and consensus [8, 13, 34] abstrac-
tions. More specifically, quorum systems have been used (either explicitly or implicitly) to reason
about distributed algorithms that tolerate process failures, as well as arbitrarily long periods of
asynchrony, also called indulgent algorithms [19]. Originally, a quorum system was defined as a
set of subsets that intersect [16], and this notion was key to reasoning about crash-resilient asyn-
chronous algorithms. More sophisticated forms of quorum systems have been introduced to cope
with Byzantine (malicious) failures [37]: these require larger intersections among subsets [40].

However, while being very useful to reason about the resilience dimension, traditional quorums
(be they simple or Byzantine) are not adequate to capture the complexity dimension. This is
particularly important given the appealing nature of optimistic distributed object implementations,
e.g., [1,7,10,12,18,20,31,36,41,46,52]. In addition to being indulgent, these implementations are also
geared to reduce best-case complexity, i.e., latency under situations of synchrony and no-contention,
which are typically argued to be frequent in practice. More specifically, these implementations are
tuned to expedite operations in uncontended and synchronous situations, provided “enough” servers
are accessed. This very notion of “enough servers to expedite an operation” is crucial, but is not
captured by traditional quorum systems. It is natural to seek for a mathematical abstraction that
captures it in precise yet general terms. This was the motivation of this work.

1.2 Example

To illustrate the motivation, consider the simple context of a crash-resilient asynchronous imple-
mentation of a wait-free atomic storage over a set of server processes [4]. It is known [11] that no
optimally resilient atomic storage algorithm can have both reads and writes complete in a single
communication round-trip (we simply say round), even if a single writer is involved (SWMR). For
instance, the classical, optimally crash-resilient solution [4] (that assumes a majority of correct
processes) requires two rounds for a read.

As we discussed earlier, it is practically appealing to look into best-case complexity and ask if it
is possible to expedite both reads and writes within a single round in a synchronous and contention-
free period. Clearly, if the reader (resp. the writer) access all servers in the first round, then it
can immediately return a valid response. But do we need to access all servers for that? How many
servers actually need to be accessed to achieve such a fast termination in best-case conditions?

Consider S = 5 servers implementing a crash-tolerant atomic wait-free storage assuming t = 2
server failures (optimal resilience). We argue below that any algorithm that greedily expedites
read/write operations in one round during synchronous and contention-free periods whenever S−t =
3 servers are accessed, violates atomicity. This is depicted through several executions of such an
algorithm (Figure 1):

1. In the first execution (ex1), writer w invokes wr = write(v) and servers 4 and 5 are faulty. Then,
wr writes value v into the subset of servers Q1 = {1, 2, 3} and completes in a single round.

2. The second execution (ex2, Fig. 1(a)) is slightly different because servers 4 and 5 are actually
correct. Yet wr also completes in a single round, after writing in Q1. Then servers 1 and 2 crash

1

wr=WRITE(v)

w

r

r’

s
e
r
v
e
r
s

1

2

3

4

5

rd=READ() -> v

(a) ex2

wr=WRITE(v)

rd=READ() -> v

(b) ex3

...

wr=WRITE(v)

rd’
rd=READ() -> v

(c) ex4

Fig. 1. Violation of atomicity in case the single-round operations access only 3 servers.

and a read rd (by the reader r) is invoked. Assuming synchrony and no contention, rd accesses
server set Q2 = {3, 4, 5} and completes in a single round.

3. The third execution (ex3, Fig. 1(b)) is similar to ex2 except that (1) the write is incomplete
and writes only to server 3, (2) servers 1 and 2 (i.e., servers from the set Q2 \Q1) are correct,
but the communication between the reader and servers from Q2 \Q1 is delayed. Read rd does
not distinguish ex3 from ex2 and completes in a single round, returning v.

4. Finally, the fourth execution (ex4, Fig. 1(c)) extends ex3 by: (1) the crash of servers 3 and 5
and (2) the invocation of read rd′ by a different reader r′. This reader cannot return v using
Q3 = {1, 2, 4} regardless of how many rounds are used. Atomicity is violated.

1
32

4

5

1

2

3
Q

Q

Q

(a) |Q1| = |Q2| = 3

1
32

4

5

1

2

3

Q’

Q’

Q

(b) |Q′1| = |Q′2| = 4

Fig. 2. Quorum intersections

Essentially, atomicity is violated because Q1 ∩Q2 ∩Q3 = ∅ (Figure 2(a)). On the other hand,
we can devise a storage algorithm that achieves fast termination whenever 4 servers are accessed.

For instance, consider the following algorithm, a variation of [4], in which all servers maintain
2 timestamp/value variables pw and w:

– On invoking wr =write(v), as in [4], the writer increments its local timestamp ts and assigns it
to value v and writes the pair to servers’ pw variable. However, unlike in [4], the write completes
in a single round only if it writes 〈ts, v〉 to 4 servers, say Q′1 = {1, 2, 3, 5}. Otherwise, if the writer

2

reaches only 3 servers in the first round (after waiting for some pre-specified time, complying
with synchrony assumptions), the writer invokes the second round of write and writes 〈ts, v〉
to servers’ w variable. The write completes when the writer receives acks in the second round
from any 3 servers.

– On the other hand, the first round of read, similarly as in [4], collects the servers’ local copies pw
and w. The reader selects a timestamp/value pair cmax = 〈tsmax, v〉 with the highest timestamp.
Unlike in [4], the read completes (and returns v) at the end of the first round, if cmax is read in 3
different pw fields, or in some w field. It is very important to notice that this is always the case
if there is no read/write contention and the reader receives a response from 4 (or more) servers
in the first round, say Q′2 = {2, 3, 4, 5}. Intuitively, the read may safely return after the first
round if it makes sure that it leaves behind at least 3 servers with the knowledge of the latest
value. This is the case both if the read accesses 3 servers from Q′1 (e.g., Q′1 ∩ Q′2 = {2, 3, 5})
that report the latest value in their pw variables, or if the reader selects the highest value from
a server w variable, meaning that the writer already informed 3 servers about the latest value.

– Otherwise, if there is contention, or only 3 servers are available, the reader may not be able
to return the value at the end of the first round. In this case, after reaching 3 servers in the
first round, the reader proceeds to the second round, in which, as in [4], the reader writes back
cmax = 〈tsmax, v〉 to servers’ pw field. The read completes when the reader receives acks from
any 3 servers in the second round.

In the above example, the key to ensuring atomicity while allowing both reads and writes to
terminate in a single round is to have Q′1 ∩ Q′2 ∩ Q3 6= ∅, where Q3 is any quorum in the system
(in our case any subset of 3 or more servers). Namely (Figure 2(b)), in a system of 5 elements, any
two subsets of 4 elements intersect with any subset of 3 elements. Basically, boosting complexity
requires to access subsets of servers that have larger intersections than traditional quorums. The
above example is (relatively) simple because we considered: a) crash failures only, b) a threshold
adversary (at most t faulty processes) and c) no graceful degradation (i.e., achieving the next best
possible latencies, when the best possible one (e.g., a single round) cannot be achieved).

The motivation underlying this paper is precisely to characterize the required intersection prop-
erties in a precise and general manner. We aim at a characterization that is necessary and sufficient
for optimizing the best-case complexity of various distributed object implementations, in various
failure models, under various adversary structures, and also considering graceful degradation.

1.3 Contributions

This paper introduces the notion of refined quorum systems (RQS). In short, a refined quorum
system of some set of elements S is a set of three classes of subsets (quorums) of S: first class
quorums are also second class quorums, which are also third class quorums. Quorums of the first
class have large intersections with quorums of other classes, those of the second class typically
have smaller intersections with those of the third class, the latter simply correspond to traditional
quorums. In the context of a distributed object implementation, the set S would typically contain
the set of fault-prone server processes over which some object abstraction (e.g., storage or consensus)
is implemented.

Intuitively, under uncontended and synchronous conditions, a distributed object implementation
would expedite an operation if a quorum of the first class is available, then degrade gracefully
depending on whether a quorum of the second or the third class is available. We argue that our

3

quorum notion is, in a sense, complete: there is no need for further refinement of quorums with the
goal of optimizing best-case efficiency. Indeed, the properties provided by our third class quorums
are anyway necessary for hindering the partitioning of the asynchronous system, which is key to
any resilient distributed atomic storage or consensus implementation. Hence, there is no need to
consider weaker intersection properties. Moreover, and as we show in this paper, optimally resilient
and best-case efficient implementations of the seminal register and consensus abstractions have
exactly three possible latencies under uncontended and synchronous conditions. This observation
is of independent interest.

Our refined quorum systems are designed to handle a general adversary structure in which
various subsets of processes can collude to defeat the protocol [26, 29, 40]. With such a general
structure, we relax the often criticized assumption, of independent and identically distributed fail-
ures [1, 7, 10,12,18,20,36,41,46,52].

We illustrate the power of our notion of refined quorum systems by introducing two new atomic
object implementations. Each algorithm is interesting in its own right and is, in a precise sense,
the first fully optimal protocol of its kind in terms of best case complexity.

– Our first object implementation is a new Byzantine-resilient asynchronous distributed storage
algorithm implementing the atomic register abstraction. Such algorithms constitute an active
area of research and are appealing alternatives to classical centralized storage systems based
on specialized hardware [48]. The challenge when devising distributed storage algorithms is to
ensure that reads and writes have low latency in most frequent situations, while (a) tolerat-
ing asynchrony and the failures of a large number of base servers (typically commodity disks)
as well as any number of clients that access the storage (wait-freedom [24]) and (b) ensuring
strong consistency (ideally atomicity [25, 33]). Using a refined quorum system, we present an
atomic wait-free storage algorithm that combines optimal resilience with the lowest possible
read/write latency in best-case conditions (no-contention and synchrony). Under such condi-
tions, our algorithm expedites storage operations (reads and writes) in a single communication
round-trip (or simply, round) if a first class quorum is accessed, in two rounds if a second class
quorum is accessed and in three rounds otherwise. The latter case is when a third class quorum
is available which is a necessary condition for resilience anyway. Our algorithm does not rely
on any data authentication primitive, and matches the resilience and complexity lower bounds
of [20, 42] (even when these bounds are extended to a general adversary structure), together
with a new bound we establish in this paper. Our new bound captures the best-case complexity
of gracefully degrading atomic storage implementations.

– Our second algorithm implements a Byzantine-resilient consensus abstraction in the general
state machine replication (SMR) framework of [34], distinguishing different process roles: pro-
posers that propose values to be learned by learners with the mediation of acceptors. Our
algorithm is the first to tolerate (1) any number of Byzantine failures of proposers and learn-
ers, (2) the largest possible number of acceptor failures, and (3) arbitrarily long periods of
asynchrony. On the other hand, under best-case conditions, our algorithm allows a value to
be learned in only two message-delays in case a first class quorum is accessed, and in three
(resp., four) message delays in case a second (resp., third) class quorum is accessed. Note here
that (a) learning in a single message delay is obviously impossible with multiple or potentially
Byzantine proposers, and (b) the availability of a third class quorum is anyway necessary for
resilience. Our algorithm matches the resilience and complexity lower bounds of [35] (including
when these bounds are extended to a general adversary structure), together with a new comple-

4

mentary bound we establish here on consensus algorithms that degrade gracefully in best-case
executions. These bounds state minimal conditions under which the state-machine replication
approach can be made optimally resilient and best-case efficient. Until now, it was not clear
whether the conditions of [35] were also sufficient. We show they are and we complement them.

We believe that it would have been very hard to devise such algorithms, especially in the context
of a general adversary structure, without the notion of a refined quorum system, though we might
be subjective here.

1.4 Roadmap

The rest of the paper is organized as follows. Section 2 first presents our quorum notion and
illustrates how it generalizes previous ones through examples from the literature. Sections 3 and 4
introduce our two new distributed object implementations that exploit the full features of refined
quorums. Proofs of correctness of our two algorithms are postponed to the appendices for better
readability of the paper. We complete the overview of related work in Section 5. Then, we conclude
the paper by pointing out some open research directions.

2 Refined Quorum Systems

2.1 Definitions

A refined quorum system is expressed in the abstract context of a non-empty set S of elements,
and an adversary structure (or, simply, adversary) B defined as follows [26]:

Definition 1. Let B be any set of subsets of S. B is an adversary (for S) if: ∀B ∈B: B′ ⊆ B ⇒
B′ ∈B.

Let QC1, QC2 and RQS be any set of subsets of S, such that QC1 ⊆QC2 ⊆RQS. We define
our quorum notion through three properties on QC1, QC2 and RQS. For every property, we first
give a basic intuition and then the formal statement.

In the following, we refer to elements of QCi as class i elements. We also sometimes write
QC3 = RQS, and refer to an element of RQS that is not a class 2 element as a class 3 element.

Informally, Property 1 states that the adversary must not control an intersection of any two
elements of RQS. Intuitively, the adversary could otherwise cause partitions in the system.

Property 1. The intersection of any two elements of RQS does not belong to B, i.e.,
P1(RQS,B) ≡ ∀Q,Q′ ∈RQS: Q ∩Q′ /∈B.

Property 2 states that no two elements of the adversary structure may “cover” the intersection
of two class 1 elements and some (class 3) element.

Intuitively, this is motivated by a latency consideration: one can think of two “lucky” clients
(e.g., a writer and a reader), each operating on a class 1 quorums and achieving optimal latency
(e.g., a single round), which does not allow for a written/read value to be “confirmed”. If 2 elements
of the adversary structure “cover” the above mentioned intersection, the adversary may leave the
information about past operations only in one of its two elements, the other simply “forgetting”

5

about the two “lucky” clients. This forces the third client (e.g., a reader) to find the information
about the past operations only at servers (elements of S) that all belong to the set of servers
that can be simultaneously controlled by the adversary. However, the third client cannot trust this
information: since it was not “confirmed”, the adversary might be simply forging it.

Property 2. The intersection of any two class 1 elements and any element of RQS is not a subset
of the union of any two elements of B, i.e.,

P2(QC1,RQS,B) ≡ ∀Q1, Q
′
1 ∈QC1, ∀Q ∈RQS, ∀B1, B2 ∈B: Q1 ∩Q′1 ∩Q * B1 ∪B2.

Property 3 is slightly more involved than Property 2. It relates an intersection X of a class 2
element and a class 3 element with a given element of adversary structure B.

Informally, Property 3 states that, for any B: (a) X is not “covered” by B and some other
element of the adversary structure, or (b) the intersection of X with each class 1 element is not
“covered” solely by B. For example, in a distributed atomic storage context, Property 3 is crucial
to facilitating both single round operations and graceful degradation to 2-round operations. The
basic intuition behind this interesting property is that if a client accesses a class 2 element, the
distributed service can respond somewhat in a slower manner (compared to the case when class 1
element is accessed), hence allowing for some “confirmation” of the clients’ operations. This allows
for intersections mandated by Property 3 to be smaller than those of Property 2 (yet larger than
those of Property 1). In addition, there is also an interesting interplay between all 3 classes of
elements. We briefly postpone a more detailed intuition of Property 3 to Example 7 in Section 2.2.

Property 3. Let X be an intersection of any class 2 element Q2 and any element Q of RQS , and
let B be any element of B. Then:
(a) the set difference between X and B does not belong to B (we say P3a(Q2, Q,B) holds), or
(b) an intersection of any class 1 element1 and X is not a subset of B (P3b(Q2, Q,B) holds), i.e.,

P3(QC1,QC2,RQS,B) ≡ ∀Q2 ∈QC2, ∀Q ∈RQS, ∀B ∈B:
(Q2 ∩Q \B /∈ B) ∨ (QC1 6= ∅ ∧ ∀Q1 ∈QC1: Q1 ∩Q2 ∩Q * B).

We are now ready to define a refined quorum system.

Definition 2. Refined Quorum System. We say that RQS is a refined quorum system for
a set S and adversary B, if RQS has two subsets QC1 ⊆QC2 ⊆RQS such that properties
P1(RQS,B), P2(QC1,RQS,B) and P3(QC1,QC2,RQS,B) hold.

We simply call elements of a refined quorum system — quorums. Note that class 1 quorums are
also class 2 quorums, which are also class 3 quorums. Notice also that, when QC1 = QC2, Property
2 implies Property 3. Furthermore, when B = ∅, Property 1 implies Property 3. Therefore, Property
3 is interesting on its own only if B 6= ∅ and QC1 6= QC2.

In the following, we give illustrations of our quorum notion and explain how it extends traditional
ones. Later in the paper, we will introduce new optimal algorithms that make full use of our quorum
notion.

2.2 Examples

To get further intuition on RQS properties, we instantiate them here in the context of a k-bounded
threshold adversary, denoted Bk. This is a special case of an adversary that contains all subsets of
1 Assuming there is at least one class 1 element, i.e., QC1 6= ∅.

6

S with cardinality at most k (i.e., Bk = {B|B ⊆ S ∧ |B| ≤ k}). In this context, the RQS properties
can be expressed as follows:

Property 1. Any two quorums intersect in at least k + 1 elements.

Property 2. The intersection of any two class 1 quorums intersects with any quorum in at least
2k + 1 elements.

Property 3. Any class 2 quorum intersects with any quorum in at least 2k + 1 elements or this
intersection itself intersects with any class 1 quorum in at least k + 1 elements.

1

2

3
4

765

8

Q’={1,2,3,4,7,8}

Q ={1,2,3,5,6}

Q={5,6,7,8}

{5,6}{7,8}

{7,8}

{5,6}

{5,6,7}

{5,6,7}

{1,2,3}

{1,2,3}

{3,4,7}

{3,4,7}

{3,5,6}

{3,5,6}RQS=

Q ={3,4,5,6,7}

{Q,Q’,Q
QC2= {Q

{QQC1=

1

2
1

1

2

2

2

1

1
2

2 1

2
,Q

1
}

,Q
1

}
}

Q’

Q

Q

Q

Q

Q

Q’

Q’

Q

Q

Q

Q

Q

Q’

Q

Q

Fig. 3. Example of a RQS for an adversary Bk (k = 1). Every pair of depicted sets intersects in at least
k + 1 elements (satisfying Property 1). Q1 intersects with every other set in at least 2k + 1 elements (satisfying
Property 2, for an intersection with itself). Moreover, for every B ∈Bk, P3a(Q2, Q

′, B) and P3a(Q2, Q1, B) hold (since
|Q2∩Q′| = 2k+1 = |Q2∩Q1|) as well as P3b(Q2, Q,B) (since |Q2∩Q∩Q1| = k+1). Hence, RQS = {Q,Q′, Q2, Q1}
is a refined quorum system, where Q1 (resp., Q2) is a class 1 (resp., class 2) quorum.

Example 1. Figure 3 depicts a simple illustration of a refined quorum system for the 1-bounded
threshold adversary B1: 4 quorums are involved. As depicted by the example, the cardinality of a
quorum is not always a good indication of its class: it is the intersection with others that matters.
Quorum Q1 contains 5 elements and is a class 1 quorum, while quorum Q′ contains 6 elements yet
is only a class 3 quorum.

In the following, we consider that an adversary B for a set of processes S contains all subsets of
S that can simultaneously be Byzantine. In our description, a process that simply fails by crashing
is not called Byzantine. We also denote by Qi the set of subsets of S that contains all subsets of S
that contain all but at most i elements of S, i.e., Qi = {P |P ⊆ S ∧ |P | ≥ |S| − i}.

Example 2. Consider the case where: (a) B = {∅}, (b) QC1 = QC2 = ∅ and (c) RQS = Qb(|S|−1)/2c.
In other words, every majority subset of S is a quorum. Property 1 is trivially satisfied. So are
Properties 2 and 3, since QC1 = QC2 = ∅. This quorum system is typically used when devising
algorithms that tolerate (a minority of) crash-failures, e.g., [4, 8, 16,34,44,50].

7

Example 3. Consider the case of an adversary Bb(|S|−1)/3c, where (a) QC1 = QC2 = ∅ and (b)
RQS= Qb(|S|−1)/3c. In this case, each quorum contains more than two thirds of processes and
Property 1 is satisfied. Properties 2 and 3 are also satisfied (since QC1 = QC2 = ∅). Such a quorum
system is typically used to tolerate (up to one third of) Byzantine failures, e.g., [7, 10,42,45].

Example 4. A refined quorum system for which QC1 = QC2 = ∅ is a dissemination quorum sys-
tem in the sense of [40]. In [40], dissemination quorum systems were used to build SWMR regular
storages [33] of authenticated (also called self-verifying) data. On the other hand, a refined quorum
system in which QC1 = ∅ and QC2 = RQS is a masking quorum system in the sense of [40]. These
systems have been used to build SWMR safe storages [33] of unauthenticated data. Both safe and
regular semantics are weaker than atomic [33] which we target with RQS.

So far, in examples 2-4, we considered refined quorum systems in which QC1 = ∅. In the rest
of the paper, we study the more general case where QC1 6= ∅. This is the case where our refined
quorum systems capture both the resilience and the best-case complexity dimensions of distributed
algorithms.

Example 5. Consider the case of a refined quorum system where ∅ 6= QC1 = QC2. Such a RQS
corresponds to the quorum system used in [36] for the specific case B = {∅}, to devise a consensus
algorithm that tolerates asynchronous periods and a threshold t of process (crash) failures, yet
expedites decisions in best-case scenarios. In fact, although not used in the algorithm, the idea of
a fast quorum (class 1 quorum in our terminology) was used to explain its logic. In the special
case of an adversary Bk, where (a) RQS = Qt, and (b) QC1 = QC2 = Qq (q ≤ t), Property 2 is
satisfied if |S| > 2q+ t+2k and Property 1 is satisfied if |S| > 2t+k. These inequalities correspond
to Lamport’s lower bounds for “asynchronous” consensus [35].

The special case of this RQS where k = q = t (i.e., where QC1 = RQS) corresponds to the
quorum system used in [1, 41]. In this special case, RQS is built around a set containing |S| > 5t
servers and where every quorum is a class 1 quorum. Both [41] and [1] showed how to achieve optimal
consensus latency in synchronous periods despite t server failures using |S| = 5t+ 1 servers. From
the RQS perspective, the latency optimal features of these algorithms are simple to explain — in
best-case scenarios, these algorithms were always able to operate on class 1 quorums. In this paper,
we consider a more general notion of RQS that does not impose any penalty on the total number
of servers while allowing for optimally resilient implementations.

Example 6. May be even more interesting is the case where ∅ 6= QC1 6= QC2 ⊆RQS (e.g., Fig. 3),
especially when RQS, QC1 and the adversary are defined as in Example 5, QC2 = Qr, and
0 ≤ q < r ≤ t. In other words, each quorum contains at least |S| − t processes, while class 1 (resp.,
class 2) quorums contain at least |S| − q (resp., |S| − r) processes. RQS satisfies (i) Property 1 if
|S| > 2t+ k, (ii) Property 2 if |S| > t+ 2k+ 2q, and (iii) Property 3 if |S| > t+ r+ k+min(k, q),
i.e., RQS is a refined quorum system if |S| > t + k + max(t, k + 2q, r + min(k, q)). This RQS
corresponds to the quorum system used in [12,20], and later in [52], as we detail below.

An important instantiation of this quorum system is the one with |S| = 3t + 1 processes, out
of which t may be Byzantine (k = t), and where all quorums are class 2 quorums (r = t), whereas
the set that contains all servers is a class 1 quorum (q = 0). This exemplifies a quorum system that
allows combining latency optimality with optimal resilience (|S| = 3t+ 1) in a Byzantine context:
optimal best-case latency can be achieved when all servers are available (class 1 quorum), whereas

8

graceful degradation (next best possible latency) is possible if only a class 2 quorum is available.
This combination is at the heart of the consensus algorithm of [12]. On the other hand, [20] employed
the mentioned quorum system to present the first optimally resilient atomic storage algorithm that
allows single round-trip operations (when class 1 quorum is accessed). Interestingly, [52] introduced
the distinction between r and t (i.e., allowing for r < t) and the additional step in graceful degra-
dation of consensus latency which can be interpreted as the distinction between class 2 and class 3
quorums.

Example 7 (Intuition behind Property 3 of RQS). As we just discussed, our RQS notion was implic-
itly used, in partial forms, in various distributed objects implementations. However, all examples
we described assumed threshold adversary. This does not explain all the subtleness of RQS, notably
of its Property 3, that becomes evident only when the general adversary structure is assumed.

Although the intuition behind Property 3 of RQS is not obvious, it should not be surprising
that Property 3 is important to allow implementations that achieve both the best possible latency
(e.g., 1 round in storage) and the next best possible latency (2 rounds in case of storage). Indeed,
consider the following example in which there are 6 servers S = {s1, s2, s3, s4, s5, s6}, with adversary
structure given by

B = {∅, {s1}, {s2}, {s3}, {s4}, {s1, s2}, {s3, s4}, {s2, s4}}

with 3 quorums, RQS = {Q1, Q2, Q
′
2}, where Q1 = {s2, s4, s5, s6}, Q2 = {s1, s2, s3, s4, s5} and

Q′2 = {s1, s2, s3, s4, s6}. It is not very difficult to verify that Q1 is a class 1 quorum, where Q2

and Q′2 are class 2 quorums. Figure 4(a) depicts several executions of a possible best-case latency
efficient atomic storage algorithm built over this RQS.

In execution ex1 synchronous write(1) (we denote by wr) must complete in a single round since
it accesses a class 1 quorum Q1. In ex2, wr completes as in ex1 (although s1 and s3 are correct).
Therefore, in ex2, synchronous and uncontended read rd must return value 1 after 2 rounds of
communication with servers from Q2. Moreover, r1 cannot distinguish ex2 from ex3 in which wr is
slow, concurrent with rd and does not reach s6. If we extend ex3 such that s5 crashes and servers
from B12 = {s1, s2} are Byzantine and “forget” about round 2 of rd, we obtain ex4. In ex4, rd′ must
return 1, but, at first, it is not clear that rd′ should return the value in ex4 after communicating
only with servers from Q′2. However, rd′ in ex4 is indistinguishable from rd′ in ex5 in which rd is
simply slow and in which rd′ must return a value (after some number of rounds) since all servers
from Q′2 are correct (hence in both ex4 and ex5, rd′ must return 1).

However, notice that, in ex5, reader r2 has (just) enough information to return 1, only because
Property 3 of RQS holds. For example, since B34 = Q2 ∩Q′2 \B12 = {s3, s4} ∈ B, P3a(Q2, Q

′
2, B12)

does not hold and consequently neither does P3a(Q2, Q
′
2, B34). Hence P3b(Q2, Q

′
2, B34) must hold,

i.e., Q1 ∩Q2 ∩Q′2 * B34. In our case Q1 ∩Q2 ∩Q′2 \B34 = {s2}, i.e., server s2 (that was accessed
in the first round of wr) is crucial for the ability of reader r2 to return 1 in rd′.

Indeed, consider the case of a “broken” RQS: RQSb = {Q1b, Q2, Q
′
2}, where Q1b = Q1 \ {s2} =

{s4, s5, s6}. RQSb is “broken” in a sense that it violates Property 3 (but not the Properties 1 and 2):
a) P3a(Q2, Q

′
2, B34) does not hold (like in RQS) and b) since Q1b∩Q2∩Q′2 ⊆ B34, P3b(Q2, Q

′
2, B34)

does not hold either (unlike in RQS). Executions ex′1 to ex′5 depicted in Figure 4(b) assume RQSb

and are respectively obtained from executions ex1 to ex5 when Q1 is replaced with Q1b (i.e., when
wr does not write in s2). Then, we can construct execution ex′6 similar to ex′5 (see Fig. 4(b)) in

9

cl
ie

nt
s

se
rv

er
s

w
r1

s1

s2

s3

s4

r2

s5

s6

write(1)

s6

write(1)

rd → 1

X
X
X
X

X

O
O
O
O
O

write(1)

X
X
X
X

X

O
O
O
O

O

rd → 1

write(1)

X
X
X
X

X

O
O

O

rd' → 1

X X...X

X X...X

X X...X

X X...X

X X...X
@

@

rd → 1
w
r1

s1

s2

s3

s4

r2

s5

s6s6

rd → 1

X
X
X
X

X

O
O
O
O
O

X
X
X
X

X

O
O
O
O

O

X
X
X
X

X

O
O

O

X X...X

X X...X

X X...X

X X...X

X X...X

rd → 1

ex1 ex2 ex3 ex4 ex5

– first round of write

X – first round of rd

O – second round of rd

X X...X – rounds of rd'

@ – server is Byzantine

Legend

crash

crash

crash

crash

write(1)

X
X
X
X

X

O
O

O

rd' → 1

X X...X

X X...X

X X...X

X X...X

X X...X
X
X
X
X

X

O
O

O

rd

X X...X

X X...X

X X...X

X X...X

X X...X

crash

(a) Executions that assume a genuine RQS

cl
ie

nt
s

se
rv

er
s

w
r1

s1

s2

s3

s4

r2

s5

s6

write(1)

s6

write(1)

rd → 1

X
X
X
X

X

O
O
O
O
O

write(1)

X
X
X
X

X

O
O
O
O

O

rd → 1

write(1)

X
X
X
X

X

O
O

O

rd' → 1

X X...X

X X...X

X X...X

X X...X

X X...X
@

@

rd → 1
w
r1

s1

s2

s3

s4

r2

s5

s6s6

rd → 1

X
X
X
X

X

O
O
O
O
O

X
X
X
X

X

O
O
O
O

O

X
X
X
X

X

O
O

O

X X...X

X X...X

X X...X

X X...X

X X...X

rd → 1

X
X
X
X

O
O

X X...X

X X...X

X X...X

X X...X

X X...X
@

rd

X
X
X
X

O
O

X X...X

X X...X

X X...X

X X...X

X X...X

@

ex'1 ex'2 ex'3 ex'4 ex'5 ex'6

crash

crash

crash

crash

write(1)

X
X
X
X

X

O
O

O

rd' → 1

X X...X

X X...X

X X...X

X X...X

X X...X
X
X
X
X

X

O
O

O

rd

X X...X

X X...X

X X...X

X X...X

X X...X

crash

crash

rd' → 1

(b) Executions that assume a “broken” RQS that violates Property 3

Fig. 4. Intuition behind Property 3 of RQS; executions of a possible atomic storage implementation.

which (i) servers from B34 are Byzantine, (ii) s5 is slow and (iii) there is no wr (i.e., value 1 is never
written). However, reader r2 cannot distinguish ex′6 from ex′5 and returns 1 in ex′6, although 1 was
never written. This violation of atomicity is a direct consequence of the violation of Property 3.

Finally, notice that the server s2 in Q1 ∩ Q2 ∩ Q′2 \ B34 (in the genuine RQS) would not be
important if P3a(Q2, Q

′
2, B12) held, i.e., if B34 was not in B. Then, in any execution, there would

be at least one benign server in B34 and the reader would not have to worry about intersections
with class 1 quorums.

In the following, we present two new algorithms that make full and explicit use of our notion
of RQS.

3 Atomic storage

We show in this section how to use a refined quorum system to wait-free [24] implement the ab-
straction of a single-writer multi-reader (SWMR) atomic [33] storage with optimal resilience and
complexity. Optimal resilience means here tolerating the maximal number of server failures while
still ensuring wait-freedom in the face of contention and asynchrony (worst-case conditions). On the
other hand, optimal complexity in our context means minimal operation latency in periods of syn-

10

chrony and contention-freedom (best-case conditions). Our storage algorithm tolerates Byzantine
servers yet does not rely on any data authentication primitive.2

In the following, and after few preliminaries on the model underlying our storage algorithm,
we overview our algorithm and then state its optimality. This includes establishing a new tight
bound on efficient atomic storage implementations. The full correctness proof of our atomic storage
implementation is given in Appendix A.

3.1 Model

Processes and channels. We model processes as a deterministic I/O automata [39]. Processes are
interconnected with point-to-point communication channels. For ease of presentation, we assume a
global clock that is not accessible to processes. The state of the communication channel between
processes p and q is modeled as a set msetp,q = msetq,p containing messages that are sent but
not yet received. We assume that every message m has two tags which identify the sender and the
receiver of the message.

We model a distributed algorithm as a collection of automata Ap, each assigned to a process p.
A computation of a process p proceeds in steps of Ap. A correct process p is one that executes an
infinite number of steps of Ap. A process fails by crashing if it executes a finite number of steps.
We say that a process is benign if it is correct or fails by crashing. A step of A is denoted by a pair
of process id and message set < p,M > (M might be ∅). In step sp =< p,M >, a benign process
p atomically does the following (we say that p takes step sp): (1) (receive substep) p removes the
messages of M from msetp,∗ (we also say: p receives the messages of M), (2) (computation substep)
p applies M and its current state stp to Ap, which outputs a new state st′p and a set of messages
M ′ to be sent, and p adopts st′p as its new state and (3) (send substep) puts the output messages
(M ′) in msetp,∗ (we also say: p sends the messages of M ′). We assume that local computation takes
negligible time, i.e., the time necessary for a benign process to take a step is negligible.

A Byzantine process pB can perform arbitrary actions: (1) pB can remove/put an arbitrary
message m from/into msetpB ,∗ at an arbitrary time t,3 and (2) pB can change its state in an
arbitrary manner. We say that a process is faulty if it is Byzantine or if it fails by crashing.

Given any algorithm A, an execution of A is an infinite sequence of steps of A taken by benign
processes, and actions of Byzantine processes, such that the following properties hold for every
benign process p: (1) initially, for each benign process q, msetp,q = ∅, (2) the current state in the
first step of p is a special state Init, and (3) for each step < p,M > of A, and for every message
m ∈M , p is the receiver of m and ∃q,msetp,q that contains m immediately before the step < p,M >
is taken. A partial execution is a finite prefix of some execution. A (partial) execution ex extends
some partial execution ex′ if ex′ is a prefix of ex. At the end of a partial execution, all messages
that are sent but not yet received are said to be in transit.

We assume that the system is asynchronous: there is no bound on communication delays. The
system may be synchronous during certain periods of time. We say that the system is synchronous
during time interval [t, t′] if there is a constant ∆ (∆ > 0) known to all correct processes, such

2 Although powerful, data authentication primitives do not provide deterministic guarantees, and might require
(1) an infrastructure for key management (for solutions based on symmetric cryptography, e.g., [6]), or (2) non-
negligible complexity of data encryption (e.g., [47]). These typically introduce overhead that one would like to
avoid, especially in the best-case scenarios.

3 Informally, we assume that no (benign) process uses data authentication.

11

that, for every two correct processes p1 and p2, every message sent by p1 at time t1 such that
[t1, t1 +∆] ⊂ [t, t′], is received by p2 at latest in the first receive substep taken by p2 after t1 +∆.

Finally, we assume that communication channels are reliable, i.e., if there is a step spp in which
some correct process p sends a message m to another correct process q, then (eventually) q takes a
step spq in which q receives m.

Distributed storage. A distributed storage (or, simply, storage) can be viewed as a read/write
abstraction implemented by a finite set of processes called servers, and a distinct, potentially
unbounded, set of processes called clients. We assume that the set of clients has two distinct
subsets, a singleton writer and a set of readers. We assume clients and servers are connected with
point-to-point channels (defined as in Section 3.1). No channels are assumed among servers.

An atomic storage provides the illusion of sequential accesses by ensuring the atomicity of
read/write operations [25,33] (when there is no risk of ambiguity we say operation when we should
be saying operation execution). We focus on wait-free [24] atomic storage algorithms in which every
read/write operation invoked by a correct client eventually completes.

Clients access the storage through two operations: (1) write(v) (invoked by the writer), to write
a value v in the storage, and (2) read() (invoked by readers), to read the value from the storage. We
do not explicitly model the invocation and response steps of the storage operations. We simply say
that an operation op invoked by client c is complete if c takes a response step for op. We assume
that all benign servers are initialized with an initial value of the storage ⊥, that is not in domain
D of valid inputs of a write operation (we denote the set D ∪ {⊥} by D⊥). No client c invokes a
new operation before all operations previously invoked by c have completed.

Denote the time when operation op is invoked by topinv . Denote the time when op completes
by topresp > topinv . We say that a complete operation op′ precedes operation op if top′resp < topinv
(we also say op follows op′). For two operations op and op′, if neither op precedes op′, nor op′

precedes op, we say op and op′ are concurrent. We say that an operation op is uncontended if op is
not concurrent with any write operation. Moreover, we say that op is synchronous if the system is
synchronous during the period between the invocation and completion of op.

Denoting the set of servers by S, and the adversary by B, we construct a refined quorum system
RQS (obeying the properties defined in Section 2) known to all clients. In the above, we assume
that, for any execution ex, Bex ∈B, where Bex contains all servers Byzantine in ex. Moreover, any
number of clients and servers may fail by crashing, as long as there is at least one quorum in RQS
that contains only correct servers.

Round-based storage algorithms. Our algorithm is round-based, i.e., each operation op (read
or write) proceeds in series of communication round-trips (or, simply, rounds). In each round of op,

1. Client c sends messages to a subset of servers (possibly all servers).
2. Servers on receiving such a message reply to client c before receiving any other messages. More

precisely, any server si on receiving a message m in step sp1 = 〈si,M〉 (m ∈ M), where m is
sent by the client c, replies to m either in step sp1 itself, or in a subsequent step sp2, such that
si does not receive any message in any step between sp1 and sp2 (including sp2). Intuitively,
this requirement forbids the server to wait for some other message before replying to m.

3. upon receiving a sufficient number k ≥ 0 of such replies, a client completes a round. The decision
on whether and when a client should proceed to the next round is algorithm-specific.

12

In short, in round-based algorithms, servers can send messages to clients only in response to
some particular messages received from a client. Since we assume that servers (resp., clients) are not
interconnected with communication channels, no other messages are exchanged in a round based
algorithm.

We express the latency (complexity) of an operation op of a round-based algorithm in terms of
the number of rounds between the invocation and the completion of op. Let P be any set of subsets
of S.

Definition 3. (m,P)–fast storage algorithm. Consider any synchronous and uncontended op-
eration op invoked by a correct client. We say that a storage algorithm A is (m,P)–fast if in every
execution of A in which some set P ∈P contains only correct servers, op completes in at most m
rounds, without using data authentication.

3.2 Atomic storage algorithm

Overview. Our storage algorithm is (m,QCm)–fast for all m ∈ {1, 2, 3}. Note that this implies
that, in our algorithm, all synchronous and uncontended operations complete in at most 3 rounds.
The pseudocode of the algorithm is given in Figures 5, 6 and 7.

The writer pseudocode (Figure 5) is simple, thanks to the underlying RQS. A write consists of
at most three rounds of interactions between the writer and servers. If write is synchronous and a
class i quorum is correct, write completes in i rounds (i ∈ {1, 2, 3}). The subtle part of the writer
code is that the writer keeps track of class 2 quorums that respond in the first round, in order to
ensure that the writer communicated with the same class 2 quorum in both rounds in the case of
a 2-round write.

Server pseudocode is given in Figure 6. In order to simplify our algorithm, we assume that
servers store the entire history of the shared variable they are implementing; we discuss this further
in Section 5.

Finally, reader pseudocode is given in Figure 7. While it is more involved than those of writer/servers,
it follows the structure of many other atomic storage algorithms (e.g., [4]). Namely, it consists of
two parts: (1) the part that implements regular [33] storage (lines 20-35, along with the predicates
defined in lines 3-9) and (2) the part that prevents read inversion and enforces atomicity, in which
the readers write value back to a “sufficient” number of servers (lines 40-49, with predicates in
lines 1-2). The key feature of the first part of the read algorithm is that it completes in a single
round, if the read is synchronous and uncontended. The second part of algorithm then evaluates
RQS intersections and the responses from servers received in the first round of such a read, to: a)
skip the writeback if a class 1 quorum was accessed, b) perform 1 (resp., 2) rounds of writeback in
case a class 2 (resp., 3) quorum was accessed.

In the remainder of this section, we first explain the details behind the write operation and
then the details of read. The correctness proof of our atomic storage algorithm is postponed to
Appendix A. The critical part of the proof consists of several short lemmas. The main theorems
(that make use of the above mentioned lemmas), despite being long, are easy to follow, since these
are mainly case-by-case analysis, where the intersection properties of RQS allow the critical lemmas
to be easily applied.

Write operation. A write consists of at most three rounds. The writer maintains a monotonically
increasing local timestamp ts that is assigned to the written value v and sent to servers in each

13

Initialization:
0: ts := 0; timeout := 2∆; QC′

2 := ∅

write(v) is {
1: inc(ts)
2: round(1)
3: if acks received from some class 1 quorum then return(OK)
4: forall Q2 ∈QC2

5: if acks received from Q2 then QC′
2 := QC′

2∪{Q2}
6: round(2)
7: if acks received from some quorum in QC′

2 then return(OK)
8: QC′

2 := ∅; round(3)
9: return(OK) }

round(i) is {
10: send wr〈ts, v,QC′

2, i〉 to all servers
11: if i < 3 then trigger(timeout)
12: wait for (reception of wr ack〈ts, i〉 from some quorum) and (expiration of timeout) }

Fig. 5. Atomic storage algorithm: writer code

round (for simplicity, we sometimes say that the writer writes a pair 〈ts, v〉). More precisely, in
every round rnd, the writer sends a wr〈ts, v,QC′2,rnd〉 message containing value v to be written,
along with a timestamp ts and a set of quorums (i.e., quorum ids) QC′2 to all servers (this set is
empty in rounds 1 and 3 and only used in round 2, as explained below). In every round, the writer
awaits acks from some quorum and, in the first two rounds, the expiration of the timer set to 2∆.

If the writer receives acks from some class 1 quorum by the expiration of the timer, the write
terminates. Otherwise, the writer proceeds to round 2. If, in round 1, the writer received acks from
some class 2 quorums, the ids of these quorums are added to QC′2 (lines 4-5, Fig. 5). If the writer
receives again acks from some quorum from QC′2 in round 2 (line 7, Fig. 5), the write terminates
at the end of round 2. Finally, if this is not the case, the writer proceeds to round 3 and completes
at the end of this round, upon reception of round 3 acks from any quorum.

Upon receipt of the message wr〈ts, v,QC′2, rnd〉, a server si stores the received data in its
historyi matrix, by storing historyi[ts, j].pair = 〈ts, v〉 for all j, 1 ≤ j ≤ rnd and by adding QC′2
to historyi[ts, rnd].sets (see Fig. 6). Then, a server sends an ack to the client.

Initialization:
1: historyi[∗, ∗].pair := 〈0,⊥〉; historyi[∗, ∗].sets := ∅

2: upon reception of a wr〈ts, v,QC′
2, rnd〉 message from some client c do

3: for m = 1 to rnd do
4: if historyi[ts,m] = 〈〈0,⊥〉, ∅〉 or historyi[ts,m] = 〈〈ts, v〉, ∗〉 then
5: historyi[ts,m].pair := 〈ts, v〉
6: if m = rnd then historyi[ts,m].sets := historyi[ts,m].sets∪QC′

2
7: send wr ack〈ts, rnd〉 to c

8: upon reception of a rd〈tsr, rnd〉 message from the reader rj
9: send rd ack〈tsr, rnd, historyi〉 to the reader rj

Fig. 6. Atomic storage algorithm: server si code

14

Definitions:
1: BCD(c, 1, R) ::= ∃Q1 ∈ QC1, ∃QR ∈QCR, ∃Set ⊆ QC2∪ {∅}:

(Q1 ∩QR ⊆ {si ∈ S | history[i, c.ts, R] = 〈c,Set〉}) ∧ ((R 6= 2) ∨ (QR ∈Set))

2: BCD(c, 2, R) ::= {Q2 ∈QC′
2 | ∃QR ∈QCR: QR ∩Q2 ⊆ {si ∈ S | history[i, c.ts, R].pair = c}}

3: valid1(c,Q) ::= ∃T ⊆ Q, ∀si ∈ T : (T /∈B) ∧ (history[i, c.ts, 1].pair = c)
4: valid2(c,Q) ::= ∃si ∈ Q : history[i, c.ts, 2].pair = c
5: valid3(c,Q) ::= ∃Q2 ∈QC2 ,∃B ∈ B, ∀si ∈ Q2 ∩Q \B, ∃Seti ⊆QC2 :

(P3b(Q2, Q,B)) ∧ (history[i, c.ts, 1] = 〈c,Seti〉) ∧ (Q2 ∈Seti)

6: invalid(c) ::= ∃Q ∈Responded: ¬(valid1(c,Q) ∨ valid2(c,Q) ∨ valid3(c,Q)) ∨ (c.ts > highest ts)

7: read(c, i) ::= ∃rnd ∈ {1, 2} : history[i, c.ts, rnd].pair = c
8: safe(c) ::= {si ∈ S | read(c, i)} /∈B
9: highCand(c) ::= ∀c′ ∈ N0 ×D⊥, ∀si ∈ S : read(c′, i) ∧ (c′.ts > c.ts)⇒ invalid(c′)

Initialization:
10: timeout := 2∆; history[∗, ∗, ∗] := 〈〈0,⊥〉, ∅〉; highest ts := 0; read no := 0

read() is {
20: read rnd := 0; QC′

2 := ∅; Responded := ∅
21: inc(read no)
22: repeat
23: inc(read rnd)
24: if read rnd = 1 then trigger(timeout)
25: send rd〈read no, read rnd〉 to all servers
26: wait for receive rd ack〈read no, read rnd, ∗〉 from some quorum
27: if read rnd = 1 then
28: wait for expiration of timeout
29: highest ts := highest timestamp hts ∈ N0 such that ∃c ∈ N0 ×D⊥, ∃si ∈ S : read(c, i) ∧ c.ts = hts
30: forall Q2 ∈QC2

31: if acks received from Q2 then QC′
2 := QC′

2∪{Q2}
32: endif
33: C := {c ∈ N0 ×D⊥ | (safe(c) ∧ highCand(c))}
34: until C 6= ∅
35: csel := c ∈ C : (∀c′ ∈ C : c.ts ≥ c′.ts)

40: if (∃i ∈ {1, 2, 3} : BCD(csel, 1, i)) and (read rnd = 1) then return(csel.val)

41: if (∃i ∈ {1, 2, 3} : BCD(csel, 2, i) 6= ∅) and (read rnd = 1)) then
42: if (∃i ∈ {2, 3} : BCD(csel, 2, i) 6= ∅) then writeback(2, csel, ∅)
43: trigger(timeout)
44: writeback(1, csel,BCD(csel, 2, 1))
45: wait for expiration of timeout
46: if acks received from some quorum from BCD(csel, 2, 1) then return(csel.val)
47: writeback(2, csel, ∅)
48: endif

49: writeback(1, csel, ∅); writeback(2, csel, ∅)

50: upon reception of rd ack〈read no, read rnd, historyi〉 from server si do
51: history[i] := historyi

52: upon received at least one rd ack message from every server si in some quorum Q ∈ RQS do
53: Responded := Responded ∪Q

writeback(round, c,Set) is {
60: send wr〈c.ts, c.val,Set, round〉 message to all servers
61: wait for reception of wr ack〈c.ts, round〉 message from some quorum
62: if round = 2 then return(csel.val) }

Fig. 7. Atomic storage algorithm: reader code

15

Read operation. As we already mentioned, reader code of our algorithm (given in Figure 7 to
which we refer in the following, unless stated otherwise) consists of two parts: (1) the part that
implements regular [33] storage (lines 20-35, with predicates in lines 3-9) and (2) the writeback
part (lines 40-49, with predicates in lines 1-2).

In the first part of the read algorithm the reader selects the timestamp/value pair (in line 35),
that contains the value that the reader is going to return after a possible writeback. The first part of
the algorithm consists in one or more rounds in which the reader sends rd〈read no, read rnd〉 (line
25), containing the unique id of a read read no (to distinguish messages sent by the same reader in
different operations) and the round number read rnd. A server replies to a rd message by sending
the entire history of the shared variable in a rd ack message in response (lines 8-9, Fig. 6). A round
ends when the reader receives responses from all servers from some quorum Q (line 26). Specifically,
in round 1, the reader: (a) also waits for the timer set to 2∆ to expire (lines 24 and 28), and (b)
stores the ids of all class 2 quorums that responded to it in the set QC′2 (lines 30-32). In general,
we say quorum Q responds in a read if a reader receives at least one rd ack from every server in Q
(lines 52-53). Remembering class 2 quorums that responded in round 1 will later reveal crucial for
allowing 2-round best-case reads and single round best-case writes in the same implementation.

In the heart of the first part of the algorithm are predicates validj (for j ∈ {1, 2, 3}), defined
in lines 3-5. These predicates ensure that if some complete write (resp., read) operation op wrote
(resp., selected) a pair c = 〈c.ts, c.val〉, in any read rd that follows op, for every quorum Q that
responded in rd there is some j such that validj(c,Q) holds. Therefore, predicate invalid(c) (line
6) cannot hold in rd and, the reader cannot select a pair csel such that csel.ts < c.ts in line 35
of rd; in other words, rd cannot return an older value than the one written/returned by op. The
pair csel is selected in line 35, as the pair with the highest timestamp among all pairs c for which
predicates highCand(c) (line 9) and safe(c) holds (line 8). Predicate highCand(c) implies that
all pairs with a higher timestamp are invalid, i.e., that there are no possibly newer values that
ought to be considered. On the other hand, predicate safe(c) guarantees that a selected value is
not fabricated by Byzantine processes; roughly speaking, all servers from some set T /∈ B need
to confirm c before a reader can select it. This prevents fabrication since, in every execution, T
contains at least one benign server.

On the other hand, the second part of the algorithm that ensures atomicity, is orchestrated
around the outcome of a Best-Case Detector (BCD), defined by predicates in lines 1-2, and accessed
RQS quorums. Roughly, BCD detects if a read operation is synchronous and uncontended. In the
following, we explain the intuition behind the techniques used in our algorithm on the example of
a one such uncontended and synchronous read rd.

Let wr be the last write that precedes rd and assume that wr wrote pair c = 〈ts, v〉 in R rounds,
R ∈ {1, 2, 3}. Note that, by atomicity, rd must return v.

First, it is crucial to see that, in a synchronous and uncontended read like rd, the first part of
the algorithm takes only a single round. Since rd is uncontended, during rd benign servers store
values with timestamps only as high as ts. As we already intuited above, in rd, for every quorum
Q that responds in round 1, there is some j such that validj(c,Q) holds. To see this, notice that
wr completed either in: (a) single round (R = 1) by accessing class 1 quorum Q1, or (b) in more
than one round (R ∈ {2, 3}). Then, it is not difficult to see that for every quorum Q, in case:
(a) valid1(c,Q) holds (by Property 2 of RQS), whereas in (b) valid2(c,Q) holds (by Property 1
of RQS). Hence, invalid(c) cannot hold at the end of round 1. Moreover, since rd is synchronous,
it gets a response from at least one quorum Qc containing only correct servers; hence, safe(c)

16

also holds. Considering possible pairs c′ with higher timestamp than ts (which could have been
reported by Byzantine servers only), it is not difficult to see that, for such c′, none of the predicates
validj(c′, Qc) for j ∈ {1, 2, 3} can hold. Hence, in the case of synchronous and uncontended read rd
the reader selects a pair csel = c written by the last preceding write in line 35 (set C in line 33 is a
singleton in such a read), and the first part of the algorithm (lines 20-35) takes only a single round.

Then, the reader proceeds to the second part of the read algorithm (that guarantees atomicity,
lines 40-49); basically, this is a sophisticated writeback procedure, based on the outcome of a BCD.
The reader queries BCD with csel = 〈ts, v〉 as a parameter (line 40) and the outcome governs the
remainder of the writeback procedure. Namely:

1. If the reader received acks from a class 1 quorum (containing only correct servers) in round 1,
BCD(csel, 1, R) holds (line 1) and rd completes at the end of round 1, without any writeback
whatsoever (line 40). Recall here that R denotes the number of rounds in which wr completed
and hence suggests the class of the quorum that was available to the writer. Notice that, by
line 1, BCD(csel, 1, R) holds only if there is a class 1 quorum Q1 and a class R quorum QR
such that all servers from Q1 ∩ QR had received a round R wr message containing ts and v
(either from the writer or some reader writing-back the pair csel) and responded to the reader.
Since read rd is synchronous and uncontended, BCD(csel, 1, R) is guaranteed to hold in case rd
accesses a class 1 quorum of correct processes in the first round.

2. Else, if the reader received acks from some class 2 quorum(s) Q2 (containing only correct servers)
in round 1, then set X=BCD(csel, 2, R) (line 2) is non-empty set of quorums (since Q2 ∈ X).
Indeed, notice that X=BCD(csel, 2, R) contains a set of all class 2 quorums Q2 such that: (a)
the reader received replies from Q2 in round 1 of rd (i.e., Q2 ∈QC′2), and (b) there is a class
R quorum QR such that all servers from Q2 ∩QR received the round R wr message containing
ts and v. Since read rd is both synchronous and uncontended, X is guaranteed to contain all
class 2 quorums (containing only correct processes) that replied to the reader in round 1.

Since X is non-empty, rd proceeds to round 2 (or, in other words, the first round of the write-
back procedure, line 41). If R ∈ {2, 3}, then the reader sends wr〈ts, v, ∅, rnd〉, with rnd = 2
to all servers, waits for acks from some quorum and returns (lines 42 and 60-62). In this case,
reader writesback with rnd = 2 since it knows that the writer already completed wrote the
value to some quorum (writing the value to servers using wr〈ts, v, ∗, rnd〉 message with rnd = 2
conveys that the client knows that all servers from some quorum have already stored pair 〈ts, v〉).

Else, if R = 1, the first round of the writeback procedure (round 2 of rd) is more sophisti-
cated, since the reader cannot be sure that all servers from some quorum already stored 〈ts, v〉
(recall here the executions depicted in Fig. 4, in Example 7, of Section 2.2). Namely, in this
case, the reader: (a) triggers a timer (line 43), (b) sends wr〈ts, v,X, 1〉 to all servers (line 44),
and (c) waits for acks until some quorum responds and the timer expires (lines 45 and 60-62).
The uncontended and synchronous read completes at the end of round 2 (the first round of the
writeback) only if the reader receives acks from some quorum from X=BCD(csel, 2, 1) (line 46).

Writing class 2 quorum ids contained in the X, is crucial for allowing 2 round best-case reads
to be combined with single round best-case writes. For example, if ex5 of Figure 4 is applied
to our algorithm, the reader in r1 would be writing back the value in the second round of rd
precisely as described above.

17

3. Otherwise, if no quorum from X replies, the second round of the writeback procedure (i.e.,
the third round of rd) is invoked (line 47). Note that the read takes at most 2 rounds in the
second part of the algorithm (i.e., in lines 40-49). Hence, when the read is synchronous and
uncontended, it completes in at most 3 rounds.

Finally, notice that while set C in line 33 is a singleton at the end of the first round of a
synchronous and uncontended read (as already mentioned), this is not necessarily the case in a
contended read. Namely, in such a read C might be empty, or even contain more than a single value
(intuitively, the first part provides regular semantics, where multiple values can be returned). The
following simple example illustrates this further.

Consider 4 servers (S = {s1, s2, s3, s4}), threshold adversary B1 (at most 1 server can be
Byzantine) and an RQS formed of a class 1 quorum that contains all 4 servers and four class 2
quorums, each containing exactly 3 servers. Assume that server s1 crashes at the beginning of an
execution in which other servers in Q = {s2, s3, s4} are correct, and in which read rd is concurrent
with two 2-round writes, wr1 and wr2, which write pairs c1 = 〈1, v1〉 and c2 = 〈2, v1〉, respectively.
In the first round of rd, servers s2 and s3 respond with their initial histories (these servers “see”
no write), while s4 “sees” a complete 2-round write of pair c1. It is not difficult to see that, at the
end of round 1 of rd, safe(〈0,⊥〉) and valid2(c1, Q) hold, C = ∅ and highest ts = 1. Then, both
wr1 and wr2 complete and, in the second round of rd, all servers from Q report that they “see”
both rounds of both writes. Then, at the end of the second round of rd, C = {c1, c2}. Indeed, it is
straightforward to see that both safe(c1) and safe(c2) hold. Moreover, invalid(c2) holds, because
c2.ts = 2 > highest ts, and hence highCand(c1) holds. However, highCand(c2) also trivially holds
(since there is no pair c′ and server si such that read(c′, i) holds and c′.ts > c2.ts). Intuitively,
in our algorithm, while highest ts is used as a cutoff timestamp to help ensure wait-freedom, the
reader still returns the latest written value whenever possible (in this case c2.val = v2).

3.3 Optimality

Consider the space of round-based storage algorithms. Let Q, Q(i) (for i ∈ {1, 2, 3}) be any sets
of subsets of (the set of servers) S. We say that an algorithm A is (Q, B)–atomic, if A wait-free
implements an atomic SWMR storage despite the adversary B provided that in every execution of
A, there is a set Q ∈Q that contains only correct servers. The minimality of our RQS is captured
via the following three theorems.

Theorem 1. If an algorithm A is (Q(3), B)–atomic, then P1(Q(3), B) holds.

Theorem 2. If a (Q(3), B)–atomic algorithm A is (1,Q(1))–fast, then P2(Q(1),Q(3), B) holds.

Theorem 3. If a (Q(3), B)–atomic algorithm A is both (1,Q(1))–fast (for some Q(1) 6= ∅) and
(2,Q(2))–fast, then P3(Q(1),Q(2),Q(3), B) holds.

As a corollary of Theorems 1–3, our atomic storage implementation of Figure 7 is optimally
resilient and has optimal (best-case) complexity.

Theorem 1 has been established for the special case of threshold-based quorums and with an
implicit notion of quorums in [42]. Moreover, a restricted form of Theorem 2 was proved in [20],
which considered atomic storage implementations in which synchronous and uncontended read/write
operations can complete in a single round, in the context of optimally resilient atomic storage

18

implementations in the threshold-based hybrid failure model [49]. It is not very difficult to extend
these bounds to the general adversary structure and the RQS setting. Theorem 3 is entirely novel,
and particularly interesting, due to the unusual or condition that appears in Property 3 of RQS.
In the following we prove Theorem 3.

Proof. Theorem 3 states that there is no (Q(3), B)–atomic storage algorithm that is both (1,Q(1))–
fast (for some Q(1) 6= ∅) and (2,Q(1))–fast, if Property 3 of RQS is violated. Assume by contra-
diction that such a storage algorithm A exists even if Property 3 of RQS is violated. Consider a
simple SWMR storage algorithm with a single writer w and two distinct readers w 6= r1 6= r2 6= w.
In the following, we denote by X the set S \X, where X is any subset of the set S (recall that S
denotes the set of all servers). Negating P3(Q(1),Q(2),Q(3)) (Property 3 of RQS) yields (having in
mind Q(1) 6= ∅):

∃Q1 ∈Q(1), ∃Q2 ∈Q(2), ∃Q ∈Q(3), ∃B′1, B2 ∈B: (Q2 ∩Q \B′1 = B2) ∧ (Q1 ∩Q2 ∩Q ⊆ B′1).

In the following, we denote the set Q1 ∩Q2 ∩Q by B0 and Q2 ∩Q∩B′1 by B1. Having in mind
that B is an adversary for S, it is straightforward to verify the following:

– B0, B1 ⊆ B′1,
– B0, B1 ∈B, and
– Q2 ∩Q = B1 ∪B2.

Moreover, since B0 ⊆ B′1 and B0 ⊆ Q2∩Q, we have B0 ⊆ B1. Hence, Q2∩Q∩Q1 = B2∪(B1\B0).
To exhibit a contradiction, we construct several partial executions (sketched in Figure 8) of

the algorithm A including one in which atomicity is violated. More specifically, in this particular
partial execution, a read operation returns a value that was never written.

– Let ex1 be the execution in which all servers from Q2 are correct, while all others (i.e., those
from Q2) fail by crashing at the beginning of the execution. Furthermore, let wr1 be the write
operation invoked at time t1 by the correct writer w in ex1 to write a value v1 6= ⊥ in the
storage. Moreover, assume that the system is synchronous in ex1. Hence, wr1 is synchronous
and uncontended. Since A is (2,Q(2))–fast, wr1 completes in ex1, say at time t′1, in at most two
communication rounds, after the writer receives the replies in round 2 from servers from Q2.

– Let ex′1 be the partial execution that ends at t′1, such that ex′1 is identical to ex1 up to time
t′1, except that in ex′1 servers from Q2 do not crash, but, due to asynchrony, all messages sent
by the writer to Q2 during wr1 remain in transit. Since the writer cannot distinguish ex′1 from
ex1, wr1 completes in ex′1, in two communication rounds, at time t′1.

– Let the partial execution ex2 extend ex′1 such that: (1) servers from Q1 crash at t′1, (2) rd1 is a
synchronous read operation invoked by the correct reader r1 after t′1, and (3) no other operation
is invoked (hence, rd1 is uncontended). Since A is (1,Q(1))–fast, rd1 completes in a single round
(since a set Q1 of servers is correct) at time t2 and returns v1. Moreover, let ex2 end at t2. All
messages that were in transit in ex′1 remain in transit in ex2.

– Let ex′2 be the partial execution identical to ex2 except that in ex′2 servers from Q1 do not
crash, but, due to asynchrony, the message sent from r1 to servers in Q1 during rd1 remains in
transit in ex′2. Since r1 and all servers, except those from Q1, cannot distinguish ex′2 from ex2,
rd1 completes in ex′2 in a single round, at time t2, and returns v1.

19

Q

B

B

Q

Q

Q

2

2

2

B 1\B 0

0

rnd1 rnd2

wr1(v1)

(a) ex1

rnd1 rnd2

wr1(v1) rd1()=v1

rnd1

Q
1

B

B

Q

Q

Q

Q
2

2

2

B 1\B 0

0

(b) ex2

Q

B

B

Q

Q

Q

2

2

2

B 1\B 0

0

rnd1 rnd2

wr1(v1) rd1()=v1

rnd1

(c) ex′′2

Q

B

B

Q

Q

Q

2

2

2

B 1\B 0

0

rnd1 rnd2

wr1(v1) rd1()=v1

rnd1 rnd1 rnd2 ... rnd n

...

...

...

rd2()=vR

...

σ1

(d) ex3

rnd1 rnd2 ... rnd n

...

...

...

rd2()=vR

...

Q

B

B

Q

Q

Q

2

2

2

B 1\B 0

0

rnd1 rnd2

wr1(v1) rd1()=v1

rnd1

@

@ σ0

σ0

(e) ex4

rnd1 rnd2 ... rnd n

...

...

...

rd2()=vR

...

Q

B

B

Q

Q

Q

2

2

2

B 1\B 0

0

rd1()=v1

rnd1

@ σ1

(f) ex5

Q
1

- servers receive and send
 messages in a round

@

- servers / client fail by crashing

- servers that belong to the set P
P

- servers that belong to

fail by crashing

receive and send messages in a round

- servers are Byzantine

(g) Legend

Fig. 8. Illustration of the partial executions used in the proof of Theorem 3. Only servers that belong to the set
Q2 ∪Q are depicted.

20

– Let ex′′2 be the partial execution identical to ex′2 except that, in ex′′2: (1) the writer crashes
during wr1 and its round 2 messages are not received by any servers from Q1 ∪ Q2 (i.e., only
servers from Q1 ∩Q2 receive the round 2 message from the writer). Note that all servers from
the set B2 ∪ (B1 \ B0) belong to Q1 and, hence, do not receive a round 2 message from the
writer. Since r1 and all servers, except those from Q1 ∩ Q2, cannot distinguish ex′′2 from ex′2,
rd1 completes in ex′′2 at time t2 and returns v1.

– Consider now a partial execution ex3 slightly different from ex′′2 in which the writer (resp., the
reader r1) crashes during the round 1 of wr1 (resp., rd1) such that the round 1 messages sent
by the writer (resp., r1) in wr1 (resp., rd1) are received only by servers from the set B2 (resp.,
Q∩Q2 ∩Q1). We refer to the state of servers that belong to the set B2 after sending the reply
to the round 1 message of wr1 as to σ1. In ex3, all servers are correct except those from the
set Q that fail by crashing at the beginning of partial execution ex3. Assume that the writer
crashes at time tfailw and that r1 crashes at time tfailr > tfailw . Let rd2 be a read operation
invoked by the correct reader r2 6= r1 at time t′3 > max(tfailr , t2). Since all servers from the set
Q are correct in ex3 and A is a (Q(3), B)–atomic storage algorithm, rd2 eventually completes,
at some point in time t3, after n communication rounds and returns value vR.

– Let ex4 be a partial execution identical to ex′′2 except that in ex4: (1) a read operation rd2 is
invoked by the correct reader r2 at t′3 (as in ex3), (2) due to asynchrony all messages sent by
servers from Q to r2 are delayed until after t3 (i.e., until after nth round of rd2) and (3) in ex4, all
servers from B1 (and B0, since B0 ⊆ B1) are Byzantine: these servers forge their state at time t2
to σ0 (the initial state of servers); otherwise, servers from B1 obey the protocol (including with
respect to the writer and the reader r1). Note that r2 and servers from Q \B1 = B2 ∪ (Q∩Q2)
cannot distinguish ex4 from ex3 and, hence, rd2 completes in ex4 at time t3 (as in ex3) and
returns vR. On the other hand, r1 cannot distinguish ex4 from ex′′2. Hence, rd1 completes in a
single round and returns v1. By atomicity, since rd1 precedes rd2, vR must equal v1.

– Consider now the partial execution ex5, identical to ex3, except that in ex5: (1) wr1 is never
invoked, (2) servers from B2 are Byzantine in ex5 and forge their state to σ1 (see ex3); otherwise,
servers from B2 send the same messages as in ex3, and (3) servers from Q do not crash in ex5,
but, due to asynchrony, all messages sent from servers from Q to r2 are delayed until after
t3 (i.e., nth round of rd2). The reader r2 and servers from Q \ B2 = B1 ∪ (Q ∩ Q2) cannot
distinguish ex5 from ex3, so rd2 completes at time t3 and returns vR, i.e., v1 (see ex4). However,
by atomicity, in ex5, rd2 must return ⊥, the initial value of the atomic storage. Since v1 6= ⊥,
ex5 violates atomicity.

Finally, notice that the assumption that Property 3 of RQS does not hold is critical in reaching
a violation of atomicity using the above sequence of executions ex1 to ex5. Namely, if Property 3
holds, then P3a(Q2, Q,B

′
1) holds (implying B2 = Q2 ∩Q \ B′1 /∈B), in which case we cannot have

ex5, or P3b(Q2, Q,B
′
1) holds (implying B0 \ B′1 6= ∅, i.e., B0 * B′1, where B0 = Q1 ∩ Q2 ∩ Q), in

which case we cannot have ex4. ut

4 Consensus

In this section, we give the second example of using RQS to obtain a novel implementation of an
important abstraction, optimal in terms of resilience and best-case complexity. The example we
consider here is that of implementing a consensus abstraction, which is at the heart of the state

21

machine replication technique [32], widely considered for building general reliable services (beyond
the storage abstraction).

The consensus algorithm we present tolerates Byzantine failures of processes and unbounded pe-
riods of asynchrony. In fact, it is the first consensus algorithm that tolerates an unbounded number
of Byzantine proposers and learners (in practical state machine replication algorithms, unbounded
number of proposers and learners would typically be translated into the unbounded number of
clients). The algorithm is optimal in terms of resilience as well as complexity, matching the lower
bounds of [35] and closing, we believe, a very important gap. The notion of complexity considered
here is again best-case complexity for this is considered practically appealing on the one hand and,
on the other hand, the worst-case complexity of a consensus algorithm that tolerates arbitrarily
long periods of asynchrony is anyway unbounded. Our algorithm expedites the consensus decision
under best-case conditions (synchrony and no contention) without using data authentication prim-
itives; however, when best-case conditions are not met, data authentication primitives are indeed
used.

In the remainder of this section, after presenting the model, we describe our consensus algo-
rithm and then state its optimality. The correctness proof of our consensus algorithm is given in
Appendix B.

4.1 Model

We model processes and channels in the same way as in Section 3.1, with the following differences:

– In contrast to Section 3.1: (1) channels are not assumed to be reliable (i.e., messages can be lost),
(2) processes that access RQS can be Byzantine, and (3) processes that form RQS may directly
communicate with each other (this also illustrates application of RQS to different models).

– We assume that the system is eventually synchronous [13] (this is crucial to circumvent the
impossibility of an asynchronous consensus [14]). Eventual synchrony means that there is a
point in time GST (Global Stabilization Time), not known to processes, such that, after GST ,
the system is synchronous. In addition, we assume that all messages sent before GST , are either
received by GST or lost.

– We allow messages to be authenticated with digital signatures [47]; however, we disallow the use
of authenticated messages in best-case executions (to avoid, in best-case executions, the inherent
practical latency overhead introduced by signatures). We denote by 〈m〉 an unauthenticated
message, and by 〈m〉σx an authenticated message, i.e., a message signed by process x. We
assume that no Byzantine process pB can forge a digital signature of some benign process p,
i.e., if pB sends 〈m〉σp in execution, ex then p already sent 〈m〉σp in ex.

Our consensus framework is composed of three sets of processes: proposers, acceptors and
learners [34]. Roughly, proposers propose values (from domain D) that are to be agreed upon by
learners, where the role of acceptors is to help learners agree. In this paper, as in [51], we assume
that the set acceptors does not intersect with the set proposers ∪ learners, i.e., no proposer or
learner can be an acceptor (note that we allow a proposer to be also a learner). We assume that
every proposer p is initialized with a single proposal value and all processes are interconnected with
point-to-point communication channels.

An algorithm solves consensus if it satisfies the following properties.

22

– (Validity:) If a benign learner learns a value v and all proposers are benign, then some proposer
has proposed v;4

– (Agreement:) No two benign learners learn different values;
– (Termination:) If a correct proposer proposes a value, then eventually, every correct learner

learns a value.

We construct a refined quorum system RQS around the set acceptors for an adversary B, such
that RQS is known to all processes. Besides Byzantine acceptors that may belong to adversary, any
number of proposers and learners can be Byzantine. Consensus safety (i.e., Validity and Agreement)
is guaranteed as long as the set of Byzantine acceptors in any execution belongs to B, while
consensus liveness (i.e., Termination) is ensured if there is a correct quorum of acceptorsQc ∈RQS.

We say that an execution ex is a best-case execution if, in ex: (1) there is no contention, i.e., (a)
all proposers are benign and (b) exactly one proposer p proposes, say some value v at time t (and
p is correct) and (2) the system is synchronous (during [t, t+ 4∆]). Let P be any set of subsets of
acceptors.

Definition 4. (m,P)–fast consensus algorithm. We say that a consensus algorithm is (m,P)–
fast if in every best-case execution ex in which some set P ∈P contains only correct acceptors, all
correct learners learn v in m+ 1 message delays5, without using authenticated messages.

In the following, we present a novel consensus algorithm, based on RQS, that is (m,QCm)–fast
for all m ∈ {1, 2, 3}.

4.2 Consensus Algorithm

Overview. The algorithm consists of two modules: (1) a Locking module that ensures safety, and
(2) an Election module used to help ensure liveness. The Locking module consists of a consult and
an update phase.

An execution of the algorithm proceeds in a sequence of views (with view numbers taking values
from N0). In every view w, except in the initial view 0 (denoted by initV iew) a single proposer
is the leader. Leaders are elected by the Election module following a round robin fashion (i.e., the
leader of view w 6= initV iew is proposer pi, where i = w mod |proposers|). Every proposer pi is
initiated with its proposal value, that it can propose only in initV iew, or in a view in which pi is
the leader.

On proposing a value in a view w 6= initV iew, the leader invokes the Locking module. First,
pi initiates the consult phase, which, roughly speaking, serves to make sure that pi changes its
proposal value to vl in case some benign learner learned vl in some of the previous view. The idea
behind the consult phase is similar to the view-change subprotocol in the algorithm of Castro and
Liskov [7]. The core difference is in the way our algorithm chooses the proposal value in the new
view. This is done using choose() function, which we explained later in details. In the consult phase,
the leader communicates with the acceptor to discover if some value might have been learned. Then,
the leader invokes the update phase.
4 The Validity property, as stated in [35], “Only a value proposed by a proposer can be learned“, is clearly impossible

to ensure in the presence of Byzantine proposers.
5 In our round-by-round eventually synchronous model [15, 30], a single message delay corresponds to a single

round. In the following, when explaining our algorithm, instead of the term round, we use the term message delay
to prevent confusion with the notion of a round in a sense of a communication round-trip used in our storage
algorithm (that, in a sense, corresponds to two message delays).

23

Initialization:
view, initV iew := 0

propose(v) is {
if (view 6= initV iew) then

consult phase
endif
update phase }

upon pj is elected
propose(v)

Fig. 9. The Locking module: High level pseudocode of a proposer pj

On the other hand, in initV iew all proposers can be seen as leaders. As shown in Figure 9, which
gives the high-level pseudocode of the Locking module, in initV iew, the proposer, on proposing a
value, skips the consult phase and executes directly the update phase.

Communication pattern of the update phase is illustrated in Figure 10; it takes 4 communication
steps and allows correct learners to learn a value in m+ 1 communication steps in best-case execu-
tions in which there is a quorum of class m which contains only correct acceptors (for m ∈ {1, 2, 3}).
In the first round of this phase, called prepare round, proposer communicates with acceptors. This
is then followed by 3 update rounds, in which acceptors send messages to all acceptors and learners.
Learners can learn a value at the end of any of the update rounds (i.e., rounds 2, 3 or 4).

propose(v)

PREPARE UPDATE1 UPDATE2 UPDATE3

proposers

ac
ce
pt
or
s

learners

p1
p2

a1
a2
a3
a4

l1
l2

Fig. 10. Communication pattern of the update phase. An acceptor may send multiple update2 messages (bolded).

In the following, we focus on the Locking module. We first explain the update phase (given in
Fig. 11) since it is the only part of the algorithm involved in a best-case execution. Then, we detail
the consult phase (Fig. 12) with the particular emphasis on the choose() function (Fig. 13). Finally,
we give a simple Election module (Fig. 14). The correctness proof of our consensus algorithm is
postponed to Appendix B.

Notice that the complete pseudocode of the Locking module, combined from pseudocodes of
Figures 9, 11 and 12 is given in Figure 15. The additional part of the Locking module consists of
lines 40 and 101-104, Fig. 15, that serve solely to halt a consensus instance, i.e., to permanently

24

stop view changes, i.e., to halt the Election module. Otherwise, lines 40 and 101-104 of Fig. 15 can
be omitted.

at every proposer pj :
Initialization:
view, initV iew := 0; vProof := nil; Q:= ∅
9: send prepare〈v, view, vProof,Q〉 to acceptors
———
at every acceptor aj :
Initialization:
viewaj := initV iew; Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQ[∗, ∗] := ∅; Prep, Update[∗] := nil

upon received m = prepare〈v, viewaj , vProof,Q〉 from pi
31: if (w ∈ Prepview ⇒ w < viewaj) and (viewaj = initV iew or (pi is leader and v matches choose(v, vProof,Q))) then
32: if Prep = v then Prepview := Prepview ∪ {viewaj } else Prep := v; Prepview := {viewaj }
33: send m1 = update1〈v, viewaj , ∅〉 to acceptors ∪ learners; old := old ∪m1

upon received m = updatestep〈v, viewaj , ∗〉 from some quorum Q and v = Prep and viewaj ∈ Prepview (for step ∈ {1, 2})
34: if Update[step] = v then Updateview[step] := Updateview[step] ∪ {viewaj }
35: else Update[step] := v; Updateview[step] := {viewaj }; UpdateQ[step, ∗] := ∅; Updateproof [step, ∗] := ∅
36: if (Q /∈ UpdateQ[step, viewaj] and step = 1) or (UpdateQ[step, viewaj] = ∅ and step = 2) then
37: UpdateQ[step, viewaj] := UpdateQ[step, viewaj] ∪Q
38: send mstep+1 = updatestep+1〈v, viewaj , Q〉 to acceptors ∪ learners; old := old ∪mstep+1

———
at every acceptor and learner x: at every learner lj :
upon received the same update1〈v, view, ∗〉 from Q1 ∈QC1 upon lj decides v
51: if x has not yet decided then decide(v) 60: learn(v)

upon received the same update2〈v, view,Q2〉 from Q2 ∈QC2

52: if x has not yet decided then decide(v)

upon received the same update3〈v, view, ∗〉 from Q3 ∈RQS
53: if x has not yet decided then decide(v)

Fig. 11. The Locking module: update phase

Update phase. The 4 communication steps of the update phase proceed as follows (line numbers
refer to Fig. 11):

1. Proposer p sends a message m = prepare to all acceptors (line 9) containing: (a) its proposal
value v, (b) the view number view, and (c) the array of authenticated messages vProof that
originates from some quorum Q of acceptors. Roughly, vProof serves as a certificate for the
proposed value v. We detail how vProof is constructed later when explaining the consult phase.
It is important to notice that, in the initV iew, vProof equals nil (i.e., contains no messages).

2. Benign acceptor aj , upon receiving m = prepare〈v, view, vProof,Q〉 from p, such that view =
viewaj (i.e., if aj is in view), checks if (line 31): (a) (unless view = initV iew) whether p is the
leader of view and whether vProof matches value v (this is done using the choose() function
that is explained later in details), and (b) aj did not already receive a prepare message in view.
If these checks succeed, aj stores v into a local variable Prep and the view number in the
set variable Prepview (we simply say, aj prepares v in view). If Prep was already equal to
v, then aj simply adds view to the set Prepview (line 32). Then aj echoes v by sending an
update1〈v, view, ∅〉 message to all acceptors and learners (line 33).

25

3. Benign acceptor aj , upon receiving update1 messages from some quorum Q with the same value v
and view number view, checks if its local view equals view and if it already prepared a message
with a value v in view. If this check succeeds, aj performs the following local computations
(we say aj 1-updates v in view with quorum Q). In case the local variable Update[1] does
not equal v (i.e., if a new value is 1-updated — line 35), aj : (i) stores v into Update[1] and
view into Updateview[1], and (ii) empties the sets UpdateQ[1, ∗] and Updateproof [1, ∗]. In case
a value v was already 1-updated (in some previous view — line 34), aj simply adds view into
Updateview[1]. Then, aj adds the identifier of the quorum Q into the set UpdateQ[1, view] and
sends an update2〈v, view,Q〉 message to all acceptors and learners (here, an update2 message is
sent once per every different quorum Q — line 38).

4. A benign acceptor aj , upon receiving update2 message from some quorum Q, performs the
similar steps as when receiving a quorum of update1 messages (we say aj 2-updates v in view),
including sending an update3 message containing v and view to all acceptors and learners (lines
34-38). The differences with respect to the step (3) are captured in lines 36-38; namely in step
(4) an acceptor: (i) adds only one quorum Q (the first one) to UpdateQ[2, ∗] per view (lines 36
and 37), and (ii) sends only one update3〈v, view, ∗〉 message per view to other acceptors and
learners.

Moreover, all acceptors and learners decide on v upon receiving update1 messages with the same
value v and view number view from a class 1 quorum (line 51). Similarly, acceptors and learners
decide on v upon receiving the same update2〈v, view,Q2〉 messages from some class 2 quorum Q2

(note here that, besides value and the view number, the quorum identifier within update2 messages
must be the same — line 52). Finally, acceptors and learners decide on v upon receiving update3

messages with the v and view from any (class 3) quorum of acceptors (line 53). Besides, a benign
learner lj learns v as soon as lj decides v (line 60).

The above scheme guarantees that, in the best case execution, in which only a single proposer
proposes in the initV iew and the system is synchronous, all correct learners learn v in two (resp.,
three; four) message delays in case a class 1 (resp., class 2; class 3) quorum of correct servers is
available.6 Note that, in the above sequence, all messages are unauthenticated.

Consult phase. In a best-case execution, the Election module, responsible for view changes, does
not change the view before all correct acceptors (and learners) decide v. However, if more than one
proposer proposes in initV iew, or some proposer is Byzantine, or if the system is asynchronous,
the Election module might designate a different proposer pi to be the leader for the new view w
(see Fig. 9) which then invokes the consult phase of the Locking module.

Proposer pi starts the consult phase of a new view w by sending the new view message to
acceptors (line 2, Fig. 12). The new view message contains a view number and a set of messages,
viewProof , which are provided to the proposer by the Election module. The set viewProof consists
of signed (authenticated) messages from a quorum of acceptors — this vouches for the authenticity
of the new view message. After sending the new view message, pi waits for a quorum Q of valid
signed acks (line 4) containing the last prepared, 1-updated and 2-updated values, along with the
corresponding view numbers. An acceptor aj acks a new view message only if (line 21, Fig. 12): (a)
the view number w is higher than the acceptor’s local view number viewaj , (b) pi is the leader of

6 Since an availability of a class 3 quorum is anyway assumed, our algorithm guarantees that a value will be learned
by all correct learners in at most four message delays in any best-case execution.

26

the view w (i.e., if i = wmod |proposers|), and (c) the set viewProof matches w, i.e., if viewProof
proof contains a quorum of authenticated messages vouching that pi may issue a new view message
for a view w.

at every proposer pj :
Initialization:
view, initV iew := 0; viewProof, vProof := nil; faulty:= ∅
2: send new view〈view, viewProof〉 to acceptors
3: repeat
4: wait for valid acks from some quorum Q ∈RQS \ faulty
5: vProof := array of received acks from Q
6: (v, abort) := choose(v, vProof,Q)
7: if abort then faulty := faulty ∪{Q}
8: until ¬(abort)
———
at every acceptor aj :
Initialization:
viewaj := initV iew; Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQ[∗, ∗] := ∅; Prep, Update[∗] := nil

upon received new view〈view, viewProof〉 from pi
21: if (view > viewaj) and (pi is the leader of view) and (viewProof matches view) then
22: viewaj := view
23: ∀step ∈ {1, 2}, ∀w : w ∈ Updateview[step] ∧ Updateproof [step, w] = ∅ do
24: send sign req〈Update[step], w, step〉 to some quorum in UpdateQ[step, w]
25: for every sent sign req〈Update[step], w, step〉 message
26: wait for acks with a valid signature from some subset of acceptors Tstep,w, Tstep,w /∈B
27: Updateproof [step, w] := received acks from Tstep,w
28: send new view ack〈viewaj , P rep, Prepview, Update[1..2], Updateview[1..2], Updateproof [1..2, ∗], UpdateQ[1..2, ∗]〉σaj

to pi

upon received sign req〈v, w, step〉 from ai
29: if m = updatestep〈v, w, ∗〉 ∈ old then send sign ack〈m〉σaj

to ai

Fig. 12. The Locking module: consult phase

An ack (i.e., a new view ack message — line 28, Fig. 12) for a view w is considered valid in line
4, Fig. 12 if every value vstep in Update[step] and every view number w′ in Updateview[step] (step ∈
{1, 2}) is accompanied by a set of signatures, Updateproof [step, w′]. Here, every Updateproof [step, w′]
must be a set of signed updatestep〈vstep, w′, ∗〉 messages sent from all acceptors from some subset
of acceptors that is not an element of an adversary (to guarantee that a message is signed by at
least one benign acceptor). An acceptor aj must obtain all the necessary sets of signatures before
replying to the new view message — this is done in lines 23-27 and 29, Fig. 12, unless aj already
possesses the required proofs. (Notice here that the variable old used in line 29, Fig. 12 is the same
variable old from Fig. 11.)

Then, the leader of view w, pi, evaluates acks from Q using the choose() function (line 6, Fig. 12
and Fig. 13).

Choose function. The choose() function is the heart of our algorithm and relies on RQS properties
to guarantee consensus safety. This function ensures the following crucial property: if any value v
is decided in a view w, then benign acceptors in a view higher than w accept only v. We sketch the
arguments (based on RQS properties) behind this property, for the view w + 1 (which gives the
base step of the induction-based proof). In the following, we refer to Figure 13.

27

Definitions:
1: Cand2(v, w,Q) ::= ∃Q1 ∈QC1, ∃B ∈B, ∀aj ∈ (Q1 ∩Q) \B : (w ∈ vProof [aj].P repview) ∧ (vProof [aj].P rep = v)

2: C3(v, w, char,Q2, B,Q) ::= ∀aj ∈ (Q2 ∩Q) \B :
P3char(Q2, Q,B) ∧ (vProof [aj].Update[1] = v) ∧ (w ∈ vProof [aj].Updateview[1]) ∧ (Q2 ∈ vProof [aj].UpdateQ[1, w])

3: Cand3(v, w, char,Q) ::= ∃Q2 ∈QC2,∃B ∈B: C3(v, w, char,Q2, B,Q)
4: V alid3(v, w, char,Q) ::= ∀Q2 ∈QC2, ∀B ∈B,∀aj ∈ Q2 ∩Q,∀w′ ∈ N :

C3(v, w, char,Q2, B,Q)⇒ ((vProof [aj].P rep = v)∧(w ∈ vProof [aj].P repview))∨(w′ ∈ vProof [aj].P repview ⇒ w′ > w)

5: Cand4(v, w,Q) ::= ∃aj ∈ Q : (vProof [aj].Update[2] = v) ∧ (w ∈ vProof [aj].Updateview[2])

choose(v′, vProof,Q) returns(vret, abort) is {
10: vret := v′; abort := false
11: if ∃v ∈ D, ∃w ∈ N0,∃char ∈ {‘a‘, ‘b‘} : Cand2(v, w,Q) ∨ Cand3(v, w, char,Q) ∨ Cand4(v, w,Q) then
12: viewmax := max{w ∈ N0 | ∃v ∈ D, ∃char ∈ {‘a‘, ‘b‘} : Cand2(v, w,Q) ∨ Cand3(v, w, char,Q) ∨ Cand4(v, w,Q)}
13: if ∃v ∈ D : Cand3(v, viewmax, ‘a‘, Q) ∨ Cand4(v, viewmax, Q) then
14: vret := v; return
15: if ∃v, v′ ∈ D : (v 6= v′) ∧ Cand3(v, viewmax, ‘b‘, Q) ∧ Cand3(v′, viewmax, ‘b‘, Q) then
16: abort := true; return
17: if ∃v ∈ D : Cand3(v, viewmax, ‘b‘, Q) then
18: if V alid3(v, viewmax, ‘b‘, Q) then vret := v else abort := true
19: return
20: vret := v ∈ D : Cand2(v, viewmax, Q); return
21: else return

Fig. 13. choose() function

Let v be the value decided by some benign process (acceptor or learner) in view w upon receiving
updatek messages from some class k quorum Qk. Then, for any Q, substituting for Q1 (resp., Q2;
Q3), Cand2(v, w,Q) holds in line 1 (resp., Cand3(v, w, char,Q) holds for some char ∈ {‘a‘, ‘b‘} in
line 3; Cand4(v, w,Q) holds in line 5). In this case, we say that v is a candidate with view number
w. It is not difficult to see that there can be no candidate v with view w′ > w (since no benign
acceptor prepares or updates any value in a view higher than w), i.e., w = viewmax in line 12.
Hence, choose() may return only the candidate with view number w. However, choose() faces the
challenging tasks of prioritizing different candidate values with the same view number w. In the
following, we illustrate how choose() relies on RQS properties to safely prioritize candidate values,
by focusing a particular example in which v was decided in view w after some benign acceptor or
learner receives update1 messages from some class 1 quorum Q1. In this case, since v was decided,
choose() must not return a value v′ 6= v. We show that, for a valid vProof that consists of
new view ack messages sent by any quorum Q, choose(∗, vProof,Q) either returns v or sets the
abort flag. In the latter case, we will show that Q actually contains some Byzantine acceptor; in
this case, the proposer will simply wait for additional new view ack messages from other acceptors
and re-invoke choose() until it encounters a quorum that does not contain Byzantine acceptors,
when choose() will not abort (see lines 3-8, Fig. 12).

As we suggested above, in this case, Cand2(v, w,Q) holds. To see this, denote the set of Byzan-
tine acceptors in any execution ex by Bex ∈ B. Then vProof contains new view ack messages from
all acceptors from the set X = Q1∩Q\Bex. Since all acceptors from X are benign they all correctly
inform the proposer that they prepared v in view w and, hence, Cand2(v, w,Q) holds. The following
arguments show that the low priority that candidate values for which Cand2(v, w,Q) holds have
in choose() (such candidate values can be returned only in line 20), does not compromise safety:

1. If, for value, v′ 6= v: (i) Cand3(v′, w, ‘a‘, Q) or (ii) Cand4(v, w,Q) hold, v′ will be returned in line
14. However, this is not possible. In case (i), there are class 2 quorum Q2 and a set B ∈ B such

28

that all acceptors from Y = Q2 ∩Q \ B reported they 1-updated v′ in w. Since, P3a(Q2, Q,B)
holds, this includes at least one benign acceptor. Similarly, in case (ii) some acceptor aj ∈ Q
reported that it 2-updated v′ in w. This means that in case (ii), just like in case (i), there is at
least one benign acceptor that 1-updated v′ in w (in a valid vProof , vProof [aj].Updateproof [2]
contains a set of signatures from all acceptors from the set T /∈ B confirming that they 1-
updated v′ in w). Since benign acceptors 1-update v in w only if all acceptors from Q′ \Bex (for
some quorum Q′) prepared v in w — by Property 1 of RQS, since Q1 ∩Q′ \Bex is non-empty,
this would imply that at least one benign acceptor prepared both v and v′ in w. A contradiction.

2. It is less obvious that choose() cannot return v′ 6= v in line 18, if both Cand3(v′, w, ‘b‘, Q)
and V alid3(v′, w, ‘b‘, Q) hold. However, this is also impossible. Namely, in this case, there is
a class 2 quorum Q2 and B ∈ B, such that all acceptors from Y = Q2 ∩ Q \ B claim they
1-updated v′ in w. If Y * Bex there is one benign acceptor that indeed 1-updated v′ in w —
a contradiction follows the argument in the previous paragraph. Otherwise, if Y ⊆ Bex, since
V alid3(v′, w, ‘b‘, Q) holds, all (benign) acceptors from Z = Q2 ∩ Q \ Bex prepared v′ in w.7 If
P3b(Q′2, Q,Bex) holds, this implies that Z ∩Q1 is non-empty, i.e., at least one benign acceptor
prepared both v and v′ in w — a contradiction. The last possibility, that P3a(Q2, Q,Bex) holds,
implies that P3a(Q2, Q, Y) also holds (since Y ⊆ Bex). However, this implies Q2 ∩Q \ Y /∈ B,
which contradicts the definition of Y .

3. Finally, it should not be difficult to see, by applying Property 2 of RQS, that Cand2(v′, w,Q)
cannot hold at the same time as Cand2(v, w,Q), for some v′ 6= v. Hence, choosing a candidate
value in line 20 is not ambiguous.

Finally, in the following we explain why choose(∗, vProof,Q) never aborts in case quorum Q
contains only benign acceptors. Assume, by contradiction, that choose(∗, vProof,Q) aborts, yet Q
contains only benign acceptors.

1. If choose() aborts in line 16, there are two values v and v′ 6= v such that both Cand3(v, w, ‘b‘, Q)
and Cand3(v′, w, ‘b‘, Q) hold. In this case there are (supposedly benign) acceptors ai, aj ∈ Q such
that ai (resp., aj) claims it 1-updated v (resp., v′) in w, i.e., that it received update1〈v, w, ∅〉
(update1〈v′, w, ∅〉) messages from some quorum Q′ (resp., Q′′) of acceptors. By Property 1
of RQS, Q′ ∩ Q′′ \ Bex 6= ∅, i.e., there is at least one benign acceptor ak that sent both
update1〈v, w, ∅〉 and update1〈v′, w, ∅〉, i.e., ak prepared both v and v′ in view w. A contradiction.

2. If choose() aborts in line 18 then, there is a value v such that Cand3(v, w, ‘b‘, Q) holds, yet
V alid3(v, w, ‘b‘, Q) does not hold. In this case, there is a class 2 quorum Q2 and a (benign)
acceptor ai ∈ Q that claims it received update1〈v, w, ∅〉 messages from all (supposedly benign)
acceptors from Q2 ∩ Q, i.e., that all acceptors from Q2 ∩ Q prepared v in w. However, since
V alid3(v, w, ‘b‘, Q) does not hold, there is a benign acceptor aj ∈ Q2∩Q for which the predicate
P = P1 ∨ P2, such that:

P1 ::= (vProof [aj].P rep = v) ∧ (w ∈ vProof [aj].P repview), and
P2 ::= w′ ∈ vProof [aj].P repview ⇒ w′ > w.

does not hold. Since aj prepared v in w, there are two possibilities.

7 Acceptors from Z could not have prepared a value in a view higher than w to satisfy V alid3(v′, w, ‘b‘, Q) since
we consider only vProof for w + 1 in this example. Benign acceptors must be in the view lower than the one for
which they send a new view ack message.

29

(a) aj never prepared a value different than v in views higher than w; in this case P1 must hold,
since aj never removes w from its variable Prepview (line 32, Fig. 11) — a contradiction.

(b) aj prepared a value different from v in a view higher than w, say in view w′. Then (line 32,
Fig. 11), Prepview at aj contains only view numbers higher than w, i.e., P2 must hold — a
contradiction.

The Election module. The Election module given in Figure 14 is very simple and guarantees
progress in case the system is eventually synchronous. It is based on an exponential increase of
the timeouts (maintained by acceptors) between views. This scheme can be seen as inefficient, and
impact the worst-case performance of our algorithm. Different optimizations of this simple scheme
are possible, but these are out of the scope of this paper.

In the following we state the optimality of our algorithm.

at every acceptor aj :
suspectT imeout, initT imeout := 5∆; nextV iewaj := initV iew % Initialization

upon reception of prepare〈∗, initV iew, ∗, ∗〉 or sync message for the first time
0: trigger(suspectT imeout)

upon expiration of (suspectT imeout)
1: suspectT imeout := suspectT imeout ∗ 2
2: inc(nextV iewaj)
3: nextLeader := nextV iewaj mod |proposers|
4: send view change〈nextV iewaj 〉σaj

to pnextLeader

5: trigger(suspectT imeout)

upon decide(v)
7: send decision〈v〉 to acceptors

upon reception of a valid decision〈v〉 from some quorum Q ∈RQS
8: stop(suspectT imeout)
———
at every proposer pj :

upon reception of view change〈nextV iew〉σai
with the same nextV iew from all ai from some Q ∈RQS

10: if nextV iew > view then
11: viewProof := ∪ received signed view change〈nextV iew〉 messages
12: view := nextV iew
13: elect(self)

upon pj proposed a value for the first time
101: wait some preset time
102: send sync to acceptors
103: send 〈decision pull〉 to acceptors

upon received decision〈v〉 (with the same v) from some quorum Q ∈RQS
104: halt

Fig. 14. The Election module

30

at every proposer pj :
Initialization:
view, initV iew := 0; viewProof, vProof := nil; Q, faulty:= ∅
propose(v) is {
1: if (view 6= initV iew) then % consult phase
2: send new view〈view, viewProof〉 to acceptors
3: repeat
4: wait for valid acks from some quorum Q ∈RQS \ faulty
5: vProof := array of received acks from Q
6: (v, abort) := choose(v, vProof,Q)
7: if abort then faulty := faulty ∪{Q}
8: until ¬(abort)
9: send prepare〈v, view, vProof,Q〉 to acceptors % update phase

upon pj is elected
10: propose(v)
———
at every acceptor aj :
Initialization:
viewaj := initV iew; Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQ[∗, ∗] := ∅; Prep, Update[∗] := nil

upon received new view〈view, viewProof〉 from pi % consult phase (lines 21-29)
21: if (view > viewaj) and (pi is the leader of view) and (viewProof matches view) then
22: viewaj := view
23: ∀step ∈ {1, 2}, ∀w : w ∈ Updateview[step] ∧ Updateproof [step, w] = ∅ do
24: send sign req〈Update[step], w, step〉 to some quorum in UpdateQ[step, w]
25: for every sent sign req〈Update[step], w, step]〉 message
26: wait for acks with a valid signature from some subset of acceptors Tstep,w, Tstep,w /∈B
27: Updateproof [step, w] := received acks from Tstep,w
28: send new view ack〈viewaj , P rep, Prepview, Update[1..2], Updateview[1..2], Updateproof [1..2, ∗], UpdateQ[1..2, ∗]〉σaj

to pi

upon received sign req〈v, w, step〉 from ai
29: if m = updatestep〈v, w, ∗〉 ∈ old then send sign ack〈m〉σaj

to ai

upon received m = prepare〈v, viewaj , vProof,Q〉 from pi % update phase (lines 31-38 and 51-60)
31: if (w ∈ Prepview ⇒ w < viewaj) and (viewaj = initV iew or (pi is leader and v matches choose(v, vProof,Q))) then
32: if Prep = v then Prepview := Prepview ∪ {viewaj } else Prep := v; Prepview := {viewaj }
33: send m1 = update1〈v, viewaj , ∅〉 to acceptors ∪ learners; old := old ∪m1

upon received m = updatestep〈v, viewaj , ∗〉 from some quorum Q and v = Prep and viewaj ∈ Prepview (for step ∈ {1, 2})
34: if Update[step] = v then Updateview[step] := Updateview[step] ∪ {viewaj }
35: else Update[step] := v; Updateview[step] := {viewaj }; UpdateQ[step, ∗] := ∅; Updateproof [step, ∗] := ∅
36: if (Q /∈ UpdateQ[step, viewaj] and step = 1) or (UpdateQ[step, viewaj] = ∅ and step = 2) then
37: UpdateQ[step, viewaj] := UpdateQ[step, viewaj] ∪Q
38: send mstep+1 = updatestep+1〈v, viewaj , Q〉 to acceptors ∪ learners; old := old ∪mstep+1

upon reception of 〈decision pull〉 from a process q
40: if decided v then send decision〈v〉 to acceptors ∪ {q}
———
at every acceptor and learner x: at every learner lj :
upon received the same update1〈v, view, ∗〉 from Q1 ∈QC1 upon lj decides v
51: if x has not yet decided then decide(v) 60: learn(v)

upon received the same update2〈v, view,Q2〉 from Q2 ∈QC2

52: if x has not yet decided then decide(v)

upon received the same update3〈v, view, ∗〉 from Q3 ∈RQS
53: if x has not yet decided then decide(v)
———
at every learner lj :
upon lj received decision〈v〉 from some subset of acceptors T , T /∈B
101: if lj has not yet learned a value then learn(v)

upon value not learned
102: wait some preset time
103: if value not learned then send 〈decision pull〉 to acceptors

Fig. 15. The Locking module
31

4.3 Optimality

We say that an algorithm A implements (Q,B)–consensus if A ensures consensus Validity and
Agreement, as long as, for any execution ex of A, the set of acceptors Byzantine in ex belongs
to B, as well as Termination in case the system is eventually synchronous and there is a set
Q ∈Q that contains only correct acceptors. Denoting by Q(i) (i = 1 . . . 3) some set of subsets of
acceptors, the following theorems capture the minimality of our RQS, assuming |proposers| ≥ 2
and |learners| ≥ 3.8

Theorem 4. If an algorithm A implements (Q(3), B)–consensus, then P1(Q(3),B) holds.

Theorem 5. If a (Q(3), B)–consensus algorithm A is (1,Q(1))–fast, then P2(Q(1),Q(3),B) holds.

Theorem 6. If a (Q(3), B)–consensus algorithm A is both (1,Q(1))–fast (for some Q(1) 6= ∅) and
(2,Q(2))–fast, then P3(Q(1),Q(2),Q(3),B) holds.

Theorem 4 is not new; it follows directly from [29]. Moreover, in the special threshold case, where
(a) B=Bk, (b) all elements of Q(1) (resp., Q(3)) contain at least n − q (resp., n − t) acceptors
(where n denotes the total number of acceptors), and (c) q = t− 2k, Theorems 4–5 correspond to
the lower bounds identified in [35].

In the following, we prove Theorem 6. To strengthen the optimality result established by The-
orem 6 we assume that proposers and learners may not be Byzantine, yet that any number of
proposers and learners may fail by crashing.

Proof. Preliminaries. To precisely prove Theorem 6, we assume full information protocols in
the round-by-round eventually synchronous model [15, 30]. The assumption of a full information
protocol is indeed without loss of generality, since if, in some particular algorithm A, a process p
does not send a message to the process q in round rnd, we model this by having process p send
to q a default message msgnil in rnd and q does not change its state upon reception of a message
msgnil. Moreover, denote by mj

i .p[q] the message sent by process p to process q in round j of some
execution exi. For presentation simplicity we assume that, in each round, every process combines all
the messages mj

i .p[q] it is about to send in round j and sends the same message mj
i .p to all processes,

such that every process q (including Byzantine ones) ignores all the portions of the message except
mj
i .p[q] (it is not difficult to see that this is indeed without loss of generality). Finally, we denote

by M j
i .X the set of all messages mj

i .p, where p ∈ X (i.e., M j
i .X = {mj

i .p|p ∈ X}).
Assume, by contradiction, that there is a (Q(3), B)–consensus algorithmA that is both (1,Q(1))–

fast (for some Q(1) 6= ∅) and (2,Q(2))–fast such that P3(Q(1),Q(2),Q(3)) is violated, i.e.:

∃Q1 ∈Q(1), ∃Q2 ∈Q(2), ∃Q ∈Q(3), ∃B′1, B2 ∈B: (Q2 ∩Q \B′1 = B2) ∧ (Q1 ∩Q2 ∩Q ⊆ B′1).

In the following, we denote the set Q1 ∩Q2 ∩Q by B0 and Q2 ∩Q∩B′1 by B1. Having in mind
that B is an adversary for S, it is straightforward to see that (i) B0, B1 ⊆ B′1, (ii) B0, B1 ∈B,
and (iii) Q2 ∩ Q = B1 ∪ B2. Moreover, since B0 ⊆ B′1 and B0 ⊆ Q2 ∩ Q, we have B0 ⊆ B1.
Furthermore, denote by X the set acceptors \ X, where X is any subset of acceptors. Hence,
Q2 ∩Q ∩Q1 = B2 ∪ (B1 \B0).

8 We exclude here the special cases where |proposers| = 1, |learners| ≤ 2 or acceptors∩(proposers∪ learners) 6= ∅).
These have to be addressed separately.

32

Denote by p0 and p1 two distinct proposers (p0 6= p1) (such proposers exist since |proposers| ≥
2). Since there are at least three learners distinct learners (because |learners| ≥ 3), there is a learner
in learners \ {p0, p1} — we denote this learner by l2. Moreover, there are two different learners
distinct from l2: we denote these by l0 and l1. Without loss of generality, if p0 ∈ {l0, l1} (resp., p1 ∈
{l0, l1}), we assume p0 = l0 (resp., p1 = l1). Recall here that (proposers∪ learners)∩acceptors = ∅.

We only consider the cases where p0 proposes 0 and p1 proposes 1 (as this is sufficient to prove
the theorem). Let m0 = m1

i .p0 (resp., m1 = m1
i .p1) be the message sent by p0 (resp., p1) in round

1 of some exi, when p0 (resp., p1) is correct and proposes 0 (resp., 1) at the beginning of round 1
of exi (notice that we consider deterministic algorithms so m0 and m1 do not depend on a given
exi). We say that a process ai plays 0 (resp. 1) to some process aj in round 2 of exi if aj cannot
distinguish, at round 2, execution exi from some execution ex′ in which (1) ai has received m0
(resp. m1) from p0 (resp., p1) in the first round, and (2) ai is correct.

To exhibit a contradiction, we construct several (partial) executions of the algorithm A, in-
cluding the one in which agreement is violated. In these executions, we consider only processes
belonging to the set acceptors ∪ {p0, p1, l0, l1, l2}. Other processes can be assumed w.l.o.g. to fail
by crashing at the beginning of each of the following executions.

ex0. Let ex0 be a best case execution (BCE) in which:

– processes p0, l0, l2 and acceptors in Q1 are correct;
– processes p1, l1 and acceptors in Q1 fail by crashing at the beginning of ex0.

Such an execution is possible since the sets {p0, l0, l2} ∪Q1 and {p1, l1} ∪Q1 do not intersect.
In ex0, correct proposer p0 proposes 0 at the beginning of round 1, at time t0 (i.e., p0 sends m0).

Since ex0 is a BCE, the system is synchronous in the first two rounds of ex0 (i.e., during [t0, t0+2∆]).
Hence, all round 1 and 2 messages exchanged among all correct processes are delivered in ex0. Since
A is (1,Q1)–fast, l0 and l2 learn 0 by the end of round 2 (i.e., in two message-delays).

ex1. Let ex1 be the best-case execution (BCE) in which:

– processes p1, l1 and acceptors in Q2 are correct;
– processes p0, l0, l2 and acceptors in Q2 fail by crashing at the beginning of ex1.

Such an execution is possible since the sets {p1, l1} ∪Q2 and {p0, l0, l2} ∪Q2 do not intersect.
In ex1, correct proposer p1 proposes 1 at the beginning of round 1, at time t0 (i.e., p1 sends

m1). Since ex1 is a BCE, the system is synchronous in the first three rounds of ex1 (i.e., during
[t0, t0 + 3∆]). Hence, all round 1-3 messages exchanged among all correct processes are delivered in
ex1. Since A is (2,Q2)–fast, l1 learns 1 by the end of round 3 (i.e., in three message-delays).

Executions ex0 and ex1 are depicted in Figure 16, where we show which messages are delivered
by the end of a given round, as well as critical steps (like proposing or learning a value). We now
construct 3 additional (partial) executions in which we reach a desired contradiction. These execu-
tions are depicted in Figure 17.

ex2 (Fig. 17(a)) . Let ex2 be a partial execution in which:

– processes p0, l0 and acceptors in Q are correct;

33

p1

p0

Q ∩Q2∩Q1

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q
2

∩
 Q

B2

B1\B0

B0

l1

l0

0

0

X

X

X

X

m0

m0

m0

m0

m0

M0
2.{p0,l0,l2} ∪ Q1

X

X

M0
2.{p0,l0,l2} ∪ Q1

M0
2.{p0,l0,l2} ∪ Q1

M0
2.{p0,l0,l2} ∪ Q1

M0
2.{p0,l0,l2} ∪ Q1l2

Q2∩Q∩Q1

0m0 M0
2.{p0,l0,l2} ∪ Q1

21round

(a) ex0

p1

p0

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q
2

∩
 Q

B2

B1\B0

B0

l2

l1

1

1

X

X

X

X

m1

m1

m1

m1

m1

m1

m1

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2 M1

3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

M1
3.{p1,l1} ∪ Q2

l0 X

21round 3

(b) ex1

v ― process proposes v ― process learns vv x ― process crashes

(c) Legend

Fig. 16. Illustration of the partial executions used in the proof of Theorem 6 (executions ex0 and ex1). Only acceptors
that belong to the set Q2 ∪Q are depicted.

– processes p1, l1, l2 and acceptors in Q fail by crashing at the beginning of round 3 of ex2, as
detailed below.

Such an execution is possible since the sets {p0, l0} ∪Q and {p1, l1, l2} ∪Q do not intersect.
In ex2, both proposers p0 and p1 propose values 0 and 1, respectively, at the beginning of round

1 (i.e., p0 and p1 send m0 and m1, respectively). Messages sent in the first two rounds of ex2 are
delivered as follows (see also Fig. 17(a)):

– (Round 1 messages.) By the end of round 1: processes in {p0, l0, l2} ∪ Q2 receive m0, while
processes in {p1, l1} ∪ Q2 receive m1. Moreover, acceptors in B2 receive the message from the
correct proposer p0 (i.e., message m0) in round 2, while those in B1 receive m0 in round 3. No
other process receives m1 (since p1 crashes in ex2).

– (Round 2 messages) The following round 2 messages are delivered by the end of round 2:
• from {p0, l0, l2} ∪ Q to p0, l0, l2, Q ∩ Q2 and B2. In other words, processes in {p0, l0, l2} ∪

(Q ∩Q2) ∪B2 receive the set of messages M2
2 .{p0, l0, l2} ∪Q by the end of round 2. Notice

that, at the end of round 1, processes in Q ∩ Q2 = B1 ∪ B2 cannot distinguish ex2 from
ex1 and play 1 in round 2 of ex2. Hence, M2

2 .{p0, l0, l2} ∪ Q is identical to the union of
M2

2 .{p0, l0, l2} ∪ (Q ∩Q2) and M2
1 .Q ∩Q2.

• from {p1, l1}∪Q2 to p1, l1, Q2∩Q and B1. In other words, processes in {p1, l1}∪(Q2∩Q)∪B1

receive the set of messages M2
2 .{p1, l1} ∪Q2 by the end of round 2. Notice that, at the end

of round 1, processes in {p1, l1} ∪Q2 cannot distinguish ex2 from ex1 and play 1 in round 2

34

of ex2. Hence, these processes send identical messages in round 2 in both ex2 and ex1 and,
therefore, M2

2 .{p1, l1} ∪Q2 = M2
1 .{p1, l1} ∪Q2.

Moreover, acceptors in B1 receive the round 2 messages sent by processes in {p0, l0, l2}∪(Q∩Q2)
(i.e., the set of messages µ = M2

2 .{p0, l0, l2} ∪ (Q ∩Q2)) in round 3 (see Fig. 17).

Finally, no other round 2 message is delivered in ex2. (This is possible, since the only remaining
round 2 messages are (a subset of) those sent by/to crash faulty processes in {p1, l1} ∪ Q). In
particular, note that processes in {p0, l0, l2} ∪B2 ∪ (Q∩Q2) never receive any round 2 message
sent by acceptors Q2 ∩Q.

Notice that, in ex2, by the end of round 2, all processes in {p0, p1, l0, l1, l2} ∪ Q2 ∪ Q receive
all the messages sent in the first two rounds by (a) at least one proposer, (b) some quorum of
acceptors, and (c) at least one learner. Processes in {p1, l1} ∪ (Q2 ∩Q) ∪B1 cannot distinguish, at
the end of round 2, ex2 from ex1, while processes in {p0, l0, l2} ∪ (Q ∩ Q2) ∪ B2 cannot wait for
any additional round 1 or round 2 message since these processes received all the messages sent by
correct processes in the first two rounds. Therefore, in ex2 no process in {p0, p1, l0, l1, l2} ∪Q2 ∪Q
waits for any additional message before moving to round 3.

At the beginning of round 3, processes in {p1, l1, l2} ∪ Q fail by crashing such that no process
receives any message sent by some of these processes in round 3. Furthermore, assume that in every
round j ≥ 3, all round j messages exchanged among correct processes are delivered by the end
of round j. Since (a) p0 is correct in ex2 and proposes a value, (b) there is a quorum of correct
acceptors Q ∈Q(3), (c) the system is eventually synchronous, and (d) A implements (Q(3), B)–
consensus, eventually a correct learner l0 learns some value v ∈ {0, 1}, say in round K, when partial
execution ex2 ends.

ex3 (Fig. 17(b)). Let ex3 be a partial execution identical to ex2, except that, in ex3:

1. Acceptors in B2 receive, in round 2 of ex3 (in addition to the messages they receive in ex2),
round 2 messages sent by processes in {p1, l1}∪(Q2∩Q), i.e., M2

3 .{p1, l1}∪(Q2∩Q). Recall here
that processes in {p1, l1}∪(Q2∩Q) play 1 in ex2 (and hence in ex3) and cannot distinguish at the
end of round 1 ex3 and ex2 from ex1; therefore, M2

3 .{p1, l1}∪ (Q2∩Q) = M2
1 .{p1, l1}∪ (Q2∩Q).

Hence, acceptors in B2 receive, by the end of round 2 of ex3, all the messages in M2
1 .{p1, l1}∪Q2.

Moreover, acceptors in B2 are Byzantine in ex3. They violate algorithm A in round 3 by sending
the same message to l1 as in the round 3 of ex1 (i.e., as if acceptors in B2 received only messages
M2

1 .{p1, l1}∪Q2, in round 2). Otherwise, acceptors in B2 send the same messages as in ex2 to all
other processes in rounds 3 to K (i.e., they “forget” they received messages M2

1 .{p1, l1}∪(Q2∩Q)
in round 2).

2. Processes in {p1, l1}∪Q do not crash in ex3 (the only process that crashes in ex3 is the learner l2).
However, due to asynchrony, no message sent in round j, j ≤ K by some process in {p1, l1}∪Q
is delivered in ex3, except: (a) round 1 and 2 messages as in ex2 and (b) round 3 messages sent
by processes in {p1, l1}∪ (Q2∩Q) to learner l1. Other messages sent by processes in {p1, l1}∪Q
are in transit in ex3.

3. In round 3 of ex3, all round 3 messages sent by processes in {p1, l1} ∪Q2 (including those sent
by Byzantine acceptors in B2) are delivered to l1; other messages sent to l1 are delayed and are
in transit in ex3. Since benign processes {p1, l1} ∪ Q2 do not distinguish round 2 of ex3 from
round 2 of ex1, they send the same messages in round 3 of ex3 as in round 3 of ex1.

35

p1

p0

Q ∩Q2∩Q1

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q
2

∩
 Q

B2

B1\B0

B0

l2

l1

round 2 3

m1

m1

m1

m1

m1

m1

m1

m0

m0

m0

m0

X

X

X

X

l0 m0

X

Q2∩Q∩Q1

1

0

...

v

m0, M1
2.Q∩Q2

M2
2.{p0,l0,l2} ∪ (Q∩Q2)

M1
2.{p1,l1} ∪ Q2

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

m0, µ

m0, µ

K1

(a) ex2

p1

p0

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q
2

∩
 Q

B2

B1\B0

B0

l2

l1 1

m1

m1

m1

m1

m1

m1

m1

M1
2.{p1,l1} ∪ Q2

m0

m0

m0

m0

l0 m0

X

M1
3.{p1,l1} ∪ Q2

m0, M1
2.{p1,l1} ∪ Q2

M2
2.{p0,l0,l2} ∪ (Q∩Q2)

@

0

1

...

v=1

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

M1
2.{p1,l1} ∪ Q2

round 2 3 K1

m0, µ

m0, µ

(b) ex3

p1

p0

Q ∩Q2∩Q1

Q2∩Q∩Q1

Q ∩Q2∩Q1

Q
2

∩
 Q

B2

B1\B0

B0

l2

l1

m1

m0

m1

m1

m1

m0, m1

m1

M4
2.{p1,l1} ∪ Q2

m0, M1
2.(Q∩Q2)

m0

m0

m0

m0

M2
2.{p0,l0,l2} ∪ Q

M0
2.{p0,l0,l2} ∪ Q1

l0 m0

M2
2.{p0,l0,l2} ∪ (Q∩Q2)

Q2∩Q∩Q1

1

0

0

@

@

@

v=1

 µ

m0, µ

M2
2.{p0,l0,l2} ∪ Q

M2
2.{p0,l0,l2} ∪ Q

M4
2.{p1,l1} ∪ Q2

M4
2.{p1,l1} ∪ Q2

M4
2.{p1,l1} ∪ Q2

M2
2.{p0,l0,l2} ∪ Q

M4
2.{p1,l1} ∪ Q2

M4
2.{p1,l1} ∪ Q2

...2 3 K1round

(c) ex4

v ― process proposes v

― process learns vv

X ― process crashes

@ ― process is Byzantine

 ― process experiences asynchrony

Mi
j.Y ― (in ex3, ex4) messages delivered

 differently than in ex2

µ = M2
2.{p0,l0,l2} ∪ (Q∩Q2)

(d) Legend

Fig. 17. Illustration of the partial executions used in the proof of Theorem 6 (executions ex2, ex3 and ex4). Only
acceptors that belong to the set Q2∪Q are depicted. In executions ex3 and ex4, messages that are delivered differently
than in ex2 are emphasized. The set of messages M2

2 .{p0, l0, l2} ∪ (Q ∩Q2) is denoted by µ.

36

Hence, at the end of round 3, l1 cannot distinguish ex3 from ex1, receives the set of messages
M3

1 .{p1, l1} ∪Q2 and learns 1.
Other round 3 and later messages in ex3 are delivered as in ex2. Hence, a correct learner l0 (the

only faulty processes in ex3 are those in {l2} ∪B2 to which l0 does not belong) cannot distinguish
ex3 and ex2. Therefore, l0 learns a value v by the end of round K when partial execution ex3 ends.
Since both l1 and l0 are correct in ex3, by the Agreement property, v must equal 1.

ex4 (Fig. 17(c)). Let ex4 be a partial execution in which:

– all processes are correct, except acceptors in B1;
– acceptors in B1 are Byzantine, as detailed below. Recall that B0 ⊆ B1.

At the beginning of ex4, p0 proposes 0, while p1 proposes 1. In round 1 of ex4 the message are
delivered exactly as in round 1 of ex2, except that (see also Fig.17(c)):

1. benign acceptors in Q1 (including those in Q2 ∩Q ∩Q1) receive m0, but not m1, and
2. acceptors in B0 receive both m0 and m1.

In round 2 and later rounds, B0 plays 1 to processes other than l2. Moreover, in round 2, all
acceptors in Q1 (including those in B0), as well as processes in {p0, l0, l2}, play 0 to l2. Here, benign
processes in {p0, l0, l2} ∪ Q1 obey the algorithm — they cannot distinguish round 1 of ex4 from
that of ex0. Moreover, in round 2 of ex4, l2 receives all the round 2 messages from processes in
{p0, l0, l2} ∪ Q1 and l2 receives only those messages — all other messages sent to l2 are in transit
in ex4. Clearly, at the end of round 2, l2 cannot distinguish ex4 from ex0 — in round 2, l2 receives
the set of messages M2

0 .{p0, l0, l2} ∪Q1 as in ex0. Hence, l2 learns 0 by the end of round 2 in ex4.
Finally, all messages sent by l2 in round 3 and later are delayed, and are in transit in ex4.

All other round 2 messages are delivered following the pattern of round 2 of ex2. Hence, just
like in ex2, in ex4, no process in X = {p0, l0}∪(Q∩Q2)∪B2 receives any round 2 message from any
acceptor in Q2 ∩Q. Therefore, processes belonging to set X miss the information that processes in
Q2 ∩ Q ∩ Q1 received m0 in the first round. Moreover, since Byzantine acceptors in B0 play 1 to
all processes but l2, processes in X cannot distinguish ex4 from ex2 at the end of round 2.

Starting from round 3, Byzantine acceptors in B1 forge their state as if they received the round
2 messages as in ex2 and ex1, i.e., as if all the processes in {p1, l1} ∪ Q2 played 1 to acceptors in
B1 in round 2 of ex4 (which is actually the case, except for the processes in Q2 ∩ Q ∩ Q1), and
acceptors in B1 received these messages. This is possible since the messages sent in the round 2 of
the best-case execution ex1 are not authenticated.

Finally, messages sent starting from round 3 by/to processes in {p1, l1}∪Q are delayed and are
in transit in ex4. Note that the set {p1, l1} ∪Q includes all processes other than {l2} ∪ B1 (which
are either also delayed or Byzantine) that can distinguish ex4 from ex2. All remaining messages in
round 3 and later are delivered as in ex2. This impedes correct learner l0 from distinguishing ex4

and ex2. Hence, l0 learns a value v by the end of round K, when ex4 ends. Since v equals 1 (see
ex3), and both l0 and l2 are correct, in ex5 agreement is violated.

Just like in the proof of Theorem 3, the assumption that Property 3 of RQS does not hold is
critical in reaching a violation of agreement using the above sequence of executions ex0 to ex4.
Namely, if Property 3 holds, then P3a(Q2, Q,B

′
1) holds (implying B2 = Q2 ∩Q \B′1 /∈B), in which

case we cannot have ex3, or P3b(Q2, Q,B
′
1) holds (implying B0 \ B′1 6= ∅, i.e., B0 * B′1, where

B0 = Q1 ∩Q2 ∩Q), in which case we cannot have ex4. ut

37

5 Related Work

In this section, we compare the techniques used in our atomic storage and consensus algorithms to
existing algorithms; thus, we complement the comparison of our paper and RQS to previous work
that we gave in Section 2.2.

Our atomic storage algorithm (Section 3.2) is inspired by techniques used in the regular [33]
finite write (FW) terminating9 storage algorithm of [2] and the wait-free atomic storage algorithm
of [20]. Both of these algorithms are optimally resilient, like our algorithm, in terms of tolerating
Byzantine servers (for tolerating Byzantine clients see, e.g., [3, 18, 23]). Unlike these (or other
existing) algorithms, our atomic wait-free storage algorithm is the first to combine optimal resilience
and best-case optimal latency in the non-threshold failure model.

However, our storage algorithm (deliberately) features unbounded worst case message-complexity
and uses unbounded storage at servers (i.e., a server stores an entire history of a shared variable).
Hence, it may seem that RQS have an undesirable side-effect of ruining other complexity metrics
while optimizing the best-case time-complexity. However, achieving atomic semantics (and even a
weaker, regular one), in a wait-free manner while precluding servers from storing the entire his-
tory, is unfeasible without using some non-trivial signaling scheme between the readers and the
writer [2,9]. Such schemes include, for example, the “Listeners” pattern of [42] (in which, roughly,
concurrent readers subscribe at servers for updates on concurrent writes and, as such, is not ap-
plicable to our storage model), the “freezing” technique of [20] (applicable to our model), bounded
implementation techniques of [3], as well as techniques used in [5]. Similarly, optimizing Byzantine
fault-tolerant storage (worst-case) complexity is not trivial [3, 21]. We opt not to address these
issues in this paper since we believe that doing so would not contribute to better understanding
of RQS. Our algorithms serve to illustrate how RQS can be used to build algorithms with optimal
best case time complexity — they do not aim to optimize other complexity metrics. Integrating the
above techniques here would not contribute to deeper understanding of RQS and might obfuscate
the point of this paper.

As an illustration of why using RQS does not require servers to store an entire history of a
shared variable, nor imposes unbounded message complexity, recall the simple variation of [4], that
we described in our example in Section 1.2). The mentioned algorithm implements optimally (crash)
resilient wait-free atomic storage. Moreover, the algorithm makes use of RQS; in the particular case
of a system consisting of 5 servers, class 1 quorums are all subsets of 4 or more servers, whereas
subsets containing 3 servers are class 2 quorums. Finally, all servers store 2 copies of the shared
variable, and reads and writes complete in at most 2 rounds.

Our consensus algorithm (Section 4.2) is itself inspired by the PBFT algorithm [7], from which
it borrows the idea of view-change mechanisms (with significant differences in choosing the proposal
value during a view-change). Namely, like PBFT, our algorithm proceeds in sequence of “views”,
which can be mapped to “ballots” in the Paxos algorithm [38]. Unlike PBFT, our algorithm does
not implement state-machine replication, but rather a single-shot consensus instance.

Finally, proofs of our storage and consensus algorithms (Appendices A and B), rely extensively
on the notion of a basic subset (intuited in Section 3.2) which simply denotes a set of servers not
belonging to adversary B. Basic subsets are similar to cores defined by Junqueira and Marzullo
[28,29]. They define cores (in broader context of a framework for tolerating dependent failures) as
minimal sets of processes such that at least one process is correct in every execution. In contrast,

9 In FW-terminating implementations, reads might not terminate in case there is an unbounded number of writes.

38

a basic subset is any set of processes such that at least one process is benign (i.e., correct or
crash-faulty) in every execution. Hence, all cores are basic subsets, yet not all basic subsets are
cores.

6 Concluding Remarks

This paper introduces the notion of refined quorum systems (RQS) and argues that this is a useful
notion to reason about optimally resilient and efficient distributed object implementations assuming
general adversary structures. We show that refined quorum systems are necessary and sufficient
(or, in a sense, minimal) for implementing an important class of atomic objects, namely atomic
storage and consensus. This minimality holds when we indeed require atomicity and do not rely on
authentication primitives to cope with Byzantine failures in best-case executions.

Roughly speaking, denoting the best possible latency of an object implementation by l110 (i.e.,
1 round in the case of storage, or 2 message delays in the case of (Byzantine and asynchronous
[35]) consensus, and by l2 and l3, incrementally, the next best possible latencies according to the
corresponding metric, we proposed two RQS-based object implementations that achieve a latency
of li whenever a quorum of class i is available and best-case conditions (namely, synchrony and no-
contention) are met. Since Property 1 of RQS (defined on class 3 quorums) is anyway necessary for
any resilient implementation of distributed storage and consensus in an asynchronous environment,
there is no need for refining quorums further.

It might be important to notice here that the very notion of a refined quorum system helps
highlight the information structure of optimally resilient and best-case efficient atomic object imple-
mentations (at least those implementing the abstractions of atomic storage or consensus). Basically,
these implementations go through at most three “rounds” in best-case conditions and fall into a
backup subprotocol in case of asynchrony or contention. A novel algorithmic scheme we used in
both algorithms consists of appending the ids of (class 2) quorums, to written/proposed values.
This is key to combining graceful degradation (i.e., achieving both latencies l1 and l2) with optimal
resilience.

Our study opens several research directions. For example, it is intriguing to determine:

– the load and availability of RQS [44],
– how RQS can be optimally placed in the network [17],
– the extension of RQS with respect to asymmetric read and write quorums [43],
– how many RQS can be found given some adversary structure,
– how to devise algorithms that cope with unknown RQS/adversary structures, and
– how RQS can be expressed in frameworks for tolerating non-independent and identically dis-

tributed (non-IID) failures, other than general adversary structures (in particular, in the core/survivor
framework of [29]).

Moreover, it would be interesting to carefully look into non-atomic semantics, e.g., regular or
safe storage [33]. Recent results (in the threshold-based context) suggest that some (yet not all)
properties of our RQS are necessary and sufficient even for achieving optimal best-case complexity
of weaker object implementations. Namely [2, 21] suggest that Properties 1 and 3a of RQS are
necessary and sufficient for characterizing non-atomic best-case efficient storage implementations.
These properties correspond to the special case of RQS where QC1 = ∅. Finally, it would also
10 This can be measured by the best possible latency in synchronous, uncontended and failure-free situations.

39

be interesting to look into atomic object implementations that use authentication in best-case
executions. The lower bounds of [35], stated in the threshold-based context, suggest that Properties
1 and 2 are necessary and sufficient for characterizing best-case efficient and optimally resilient
consensus implementations regardless of whether authentication is used in the best-case. These
properties correspond to the special case of RQS where QC2 = QC1.

Finally, we note that the preliminary, conference version of this paper [22], was erroneous,
notably in the way it stated Property 3 of RQS (please see Appendix C for more details).

Acknowledgments

We are very grateful to anonymous reviewers for pointing out a mistake in the conference version
of this paper. Their very detailed comments significantly improved the paper. We also thank Hagit
Attiya for her detailed comments on earlier drafts of this paper. Finally, we thank Christian Cachin,
Christof Fetzer, Petr Kouznetsov, Ron R. Levy, Dahlia Malkhi and Eric Ruppert for their helpful
comments and useful feedback.

References

1. Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J. Wylie. Fault-
scalable Byzantine fault-tolerant services. In Proceedings of the 20th ACM symposium on Operating systems
principles, pages 59–74, October 2005.

2. Ittai Abraham, Gregory V. Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos: optimal resilience
with Byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

3. Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. Bounded wait-free implementation of optimally re-
silient byzantine storage without (unproven) cryptographic assumptions. In Proceedings of the 21st International
Symposium on Distributed Computing, pages 7–19, September 2007.

4. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal
of the ACM, 42(1):124–142, 1995.

5. Rida Bazzi and Yin Ding. Non-skipping timestamps for Byzantine data storage systems. In Proceedings of
the 18th International Symposium on Distributed Computing, volume 3274/2004 of Lecture Nodes in Computer
Science, pages 405–419, Oct 2004.

6. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast and secure message
authentication. Lecture Notes in Computer Science, 1666:216–233, 1999.

7. Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation, February 1999.

8. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of the ACM, 43(2):225–267, March 1996.

9. Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Amnesic distributed storage. In Proceedings of the 21st
International Symposium on Distributed Computing, pages 139–151, September 2007.

10. James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira. HQ replication: A hybrid
quorum protocol for Byzantine fault tolerance. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementations, November 2006.

11. Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can a distributed atomic
read be? In Proceedings of the 23rd annual ACM symposium on Principles of distributed computing, pages
236–245, July 2004.

12. Partha Dutta, Rachid Guerraoui, and Marko Vukolić. Best-case complexity of asynchronous Byzantine consensus.
Technical Report 200499, Swiss Federal Institute of Technology (EPFL), School of Computer and Communication
Sciences, Lausanne, Switzerland, 2005.

13. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–323, April 1988.

14. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–382, April 1985.

40

15. Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceed-
ings of the 17th annual ACM symposium on Principles of distributed computing, pages 143–152, June 1998.

16. David K. Gifford. Weighted voting for replicated data. In Proceedings of the 7th ACM symposium on Operating
systems principles, pages 150–162, December 1979.

17. Daniel Golovin, Anupam Gupta, Bruce M. Maggs, Florian Oprea, and Michael K. Reiter. Quorum placement in
networks: Minimizing network congestion. In Proceedings of the 15th annual ACM symposium on Principles of
distributed computing, pages 16–25, July 2006.

18. Garth Goodson, Jay Wylie, Gregory Ganger, and Michael Reiter. Efficient Byzantine-tolerant erasure-coded
storage. In Proceedings of the International Conference on Dependable Systems and Networks, pages 135–144,
2004.

19. Rachid Guerraoui. Indulgent algorithms (preliminary version). In Proceedings of the 19th annual ACM symposium
on Principles of distributed computing, pages 289–297, July 2000.

20. Rachid Guerraoui, Ron R. Levy, and Marko Vukolić. Lucky read/write access to robust atomic storage. In
Proceedings of the International Conference on Dependable Systems and Networks, pages 125–136, June 2006.
The full version of this paper is available as a EPFL/LPD technical report (LPD-REPORT-2005-005) with the
same title.

21. Rachid Guerraoui and Marko Vukolić. How Fast Can a Very Robust Read Be? In Proceedings of the 25th ACM
Symposium on Principles of Distributed Computing, pages 248–257, July 2006.

22. Rachid Guerraoui and Marko Vukolić. Refined quorum systems. In Proceedings of the 26th annual ACM sympo-
sium on Principles of distributed computing, pages 119–128, New York, NY, USA, 2007. ACM.

23. James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead Byzantine fault-tolerant storage. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles, pages 73–86,
New York, NY, USA, 2007. ACM.

24. Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

25. Maurice Herlihy and Jeannette Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

26. Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure multi-party com-
putation (extended abstract). In Proceedings of the 16th annual ACM symposium on Principles of distributed
computing, pages 25–34, 1997.

27. Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared objects. Journal of
the ACM, 45(3):451–500, 1998.

28. Flavio Junqueira and Keith Marzullo. A framework for the design of dependent-failure algorithms: Research
articles. Concurr. Comput. : Pract. Exper., 19(17):2255–2269, 2007.

29. Flavio P. Junqueira and Keith Marzullo. Synchronous consensus for dependent process failures. In Proceedings
of the 23rd IEEE International Conference on Distributed Computing Systems, pages 274–283, May 2003.

30. Idit Keidar and Alexander Shraer. Timeliness, failure-detectors, and consensus performance. In Proceedings of
the 25th annual ACM symposium on Principles of distributed computing, pages 169–178, 2006.

31. Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva: speculative
Byzantine fault tolerance. In Proceedings of 21st ACM SIGOPS symposium on Operating systems principles,
pages 45–58, New York, NY, USA, 2007. ACM.

32. Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

33. Leslie Lamport. On interprocess communication. Distributed computing, 1(1):77–101, May 1986.
34. Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, 1998.
35. Leslie Lamport. Lower bounds for asynchronous consensus. In Future Directions in Distributed Computing,

Springer Verlag (LNCS), pages 22–23, 2003.
36. Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.
37. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3):382–401, July 1982.
38. Butler Lampson. The ABCD’s of Paxos. In Proceedings of the 20th annual ACM symposium on Principles of

distributed computing, page 13, New York, NY, USA, 2001. ACM.
39. Nancy A. Lynch and Mark R.Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–246,

1989.
40. Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213, 1998.
41. Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. IEEE Transactions on Dependable and

Secure Computing, 3(3):202–215, 2006.

41

42. Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal Byzantine storage. In Proceedings of the
16th International Conference on Distributed Computing, pages 311–325, October 2002.

43. Jean-Phillipe Martin, Lorenzo Alvisi, and Michael Dahlin. Small Byzantine quorum systems. In Proceedings of
the International Conference on Dependable Systems and Networks, pages 374–383, June 2002.

44. Moni Naor and Avishai Wool. The load, capacity and availability of quorum systems. In Proceedings of the 35th
IEEE Symposium on Foundations of Computer Science, pages 214–225, 1994.

45. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreements in the presence of faults. Journal of
the ACM, 27(2):228–234, April 1980.

46. HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous Byzantine-fault-tolerant atomic
broadcast. In Proceedings of the 9th International Conference on Principles of Distributed Systems, pages 88–102,
December 2005.

47. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

48. Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan Spence. Fab: building distributed
enterprise disk arrays from commodity components. SIGOPS Oper. Syst. Rev., 38(5):48–58, 2004.

49. Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes. In Proceedings of
the seventh symposium on Reliable distributed systems, pages 93–100. IEEE Computer Society Press, 1988.

50. Robert H. Thomas. A majority consensus approach to concurrency control for multiple copy databases. ACM
Trans. Database Syst., 4(2):180–209, 1979.

51. Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike Dahlin. Separating agreement
from execution for Byzantine fault tolerant services. In Proceedings of the 19th ACM symposium on Operating
systems principles, pages 253–267, 2003.

52. Piotr Zieliński. Optimistically terminating consensus. Technical Report UCAM-CL-TR-668, Cambridge Univer-
sity, Cambridge, UK, June 2006.

42

A Correctness of the atomic storage algorithm

In this Appendix, we prove the correctness of our atomic storage algorithm of Section 3.2. For
simplicity of presentation, we introduce the following notation and definitions:

– We say that the writer attaches timestamp ts to value val, if the writer invokes write(val) and
ts equals the writer’s local variable ts after the writer executes line 1, Fig. 5 in write(val);

– We say that a (timestamp/value) pair c = 〈ts, val〉 is valid, if the writer attached ts to val, or
if c = 〈0,⊥〉 (otherwise, c is called invalid).

– If some reader r executes line 35, Fig. 7, and assigns some pair c = 〈ts, val〉 to csel, we say r
selects pair c;

– We say that a server responds to, or acks a wr〈ts, ∗, ∗, rnd〉 (resp., rd〈tsr, rnd〉) message from
client, if a server sends a wr ack〈ts, rnd〉 (resp., rd ack〈tsr, rnd, ∗〉) to the client.

– We say that a benign server si stores pair c = 〈c.ts, c.val〉 (in slot rnd ∈ {1, 2, 3}), if, at some
point in time, historyi[c.ts, rnd].pair = c. If, additionally, Q ∈ historyi[c.ts, rnd].sets for some
quorum Q, we say that si stores c (in slot rnd) with quorum Q;

– We denote by Bex the set that contains all Byzantine servers in some execution ex (we assume
Bex ∈ B).

Definition 5. Consider a set of elements S and an adversary for S, B. We say that Q ⊆ S is a
basic (resp., large) subset (of S), if Q is not a subset of any element (resp., a union of any two
elements) of an adversary structure, i.e., Q /∈B (resp., ∀B1, B2 ∈B: Q * (B1 ∪B2)).

We first prove atomicity and then we proceed to wait-freedom and complexity. To prove atom-
icity, we first prove few simple lemmas.

Lemma 1. Size of basic sets. In every execution of our storage algorithm, any basic subset of
servers contains at least one benign server.

Proof. The lemma follows directly from the definition of a basic subset (Definition 5). ut

Lemma 2. Size of large sets. In any execution ex of our storage algorithm, for any large subset
T2 of servers, there is a basic subset T1 ⊆ T2 that contains only benign servers.

Proof. By Definition 5, for any large subset T2, T2 \ Bex is a basic subset. By definition of Bex,
T2 \Bex contains only benign servers in ex. Hence the lemma. ut

The following two lemmas follow directly from our assumption of benign readers and by trivial
inspection of the read pseudocode in Fig. 7.

Lemma 3. Returned values. If read rd by reader r returns value val, then r selected pair c =
〈ts, val〉, for some timestamp ts.

Lemma 4. Values written by readers. If some reader r sends a wr〈ts, v, ∗, ∗〉 to servers, then
r selected 〈ts, v〉.

Lemma 5. Validity of selected pairs. If reader r selects pair c = 〈c.ts, c.val〉 in some read,
then c is valid.

43

Proof. Suppose by contradiction that some read selects pair c, such that c is invalid. Let rd be the
first read (according to the global clock) to select an invalid pair c at time t. Therefore, up to time
t, by Lemma 4, readers send only wr messages containing valid pairs and benign servers store only
valid pairs.

Since r selects c, predicate safe(c) holds in rd, i.e., servers from a basic subset T have sent
a rd ack message containing c in their history[c.ts, 1] or history[c.ts, 2] variables. By Lemma 1 at
least one benign server si ∈ T stored an invalid pair c before time t. A contradiction. ut

Lemma 6. Validity of stored pairs. Benign servers store only valid pairs.

Proof. Follows from Lemmas 4 and 5. ut

Lemma 7. No ambiguity. No two benign servers ever store different pairs with the same times-
tamp.

Proof. By Lemma 6, the assumption that the writer is benign and the fact that the writer never
attaches different timestamps to the same value. ut

Lemma 8. Sticky values. For any rnd ∈ {1, 2, 3} and benign server si, once historyi[ts, rnd].pair 6=
〈0,⊥〉 it is never modified.

Proof. Immediate from the condition in line 4 of the server pseudocode (Fig. 6). ut

Lemma 9. Sticky sets. For any rnd ∈ {1, 2, 3} and benign server si, once si adds the id of some
quorum Q to historyi[ts, rnd].sets, si never removes Q from historyi[ts, rnd].sets.

Proof. Trivially, by inspection of the server code (Fig. 6). ut

Before proceeding with the proof, we define the following three global predicates, extensively
used in the remainder of the proof.

1. V1(c,Q) holds if and only if there is a basic subset TQ ⊆ Q that contains only benign servers,
such that every server si ∈ TQ stores c in slot 1 (i.e., ∀si ∈ TQ : historyi[c.ts, 1].pair = c)

2. V2(c,Q) holds if and only if there is a benign server si ∈ Q that stores c in slot 2 (i.e.,
historyi[c.ts, 2].pair = c);

3. V3(c,Q) holds if and only if there is a class 2 quorum Q2 and a set B that belongs to the
adversary structure B, such that P3b(Q2, Q,B) holds and every server si from Q2 ∩ Q \ B is
benign and si stores c in slot 1 with quorum Q2 (i.e., ∀si ∈ Q2 ∩Q \ B : historyi[c.ts, 1] = 〈c,
Seti〉 ∧Q2 ∈ Seti).

The following lemma relates the global predicate Vj(c,Q) to read predicate validj(c,Q) (for
j ∈ {1, 2, 3}).

Lemma 10. Assume Vj(c,Q) holds at time t in some execution ex. Then in read rd invoked after
t, Q ∈ Responded implies validj(c,Q), for any j ∈ {1, 2, 3}.

44

Proof. By Lemmas 8 and 9 once the predicate Vj(c,Q) (for j ∈ {1, 2, 3}) becomes true in some
execution ex, it remains always true in ex. Then, since Q ∈ Responded, all benign servers from
Q responded to at least one rd message in rd (lines 52-53, Fig. 7). Finally, since rd is invoked in ex
after Vj(c,Q) becomes true in ex, it is straightforward to see that in rd validj(c,Q) holds (for any
j ∈ {1, 2, 3}). ut

The following lemma is crucial in proving atomicity.

Lemma 11. Locking the value. If for every quorum Q, at least one of properties Vj(c,Q) holds
by time t (for some j ∈ {1, 2, 3}), for some pair c, then reader r cannot select pair c′ in a complete
read rd invoked after t, such that c′.ts < c.ts.

Proof. Let t1 be the time when the first round of rd completes; by lines 26 and 52-53 of Fig. 7,
for t ≥ t1, Responded contains at least one quorum Qr. By reader pseudocode, reader r cannot
select any pair in rd before t1. Fix j ∈ {1, 2, 3}, such that Vj(c,Qr) holds before rd is invoked.

Assume by contradiction that r can select c′ in rd. Then, highCand(c′) holds (line 9, Fig. 7)
in rd after t1. Since highCand(c′), at least one of the following must hold: (a) after t1, there is no
server si, such that read(c, i) holds in rd, or (b) invalid(c) holds in rd after t1. However, since Qr ∈
Responded (by time t1) and since Vj(c,Qr) holds before rd is invoked, by Lemma 10, validj(c,Qr)
holds in rd after t1. Moreover, by definition of highest ts (line 29, Fig. 7), in rd, highest ts ≥ c.ts.
Therefore, invalid(c) cannot hold in rd after t1. Moreover, validj(c,Qr) trivially implies read(c, i)
for some si ∈ Qr. A contradiction. ut

Now we prove atomicity of read operations with respect to write operations.

Lemma 12. read/write atomicity. If read rd is complete and it follows some complete wr =
write(v), then rd does not return a value older than v.

Proof. Having Lemma 3 in mind, it is sufficient to show that the reader in rd does not select c,
such that c.ts < ts, where ts is the timestamp attached by the writer to v.

First, suppose that wr completes in a single round. Then, all benign servers of some class 1
quorum Q1 store pair 〈ts, v〉 in slot 1. By Property 2 of RQS, and Definition 5, for every quorum
Q, Q1 ∩ Q is a large subset, and every large subset is a superset of a basic subset that contains
only benign servers (by Lemma 2). Therefore, for every quorum Q there is a basic subset TQ that
contains only benign servers such that TQ ⊆ Q and TQ ⊆ Q1. Hence, for every quorum Q property
V1(〈ts, v〉, Q) holds by the end of wr. Finally, by Lemma 11, rd does not select c, such that c.ts < ts.

Now, suppose that wr completes in two or three rounds. Then, all benign servers of some
quorum Q′ store pair 〈ts, v〉 in slot 2. Since any quorum intersects with any other quorum Q in a
basic subset (by Property 1 of RQS, and Definition 5), Q′ ∩ Q is a basic subset that contains at
least one benign server (by Lemma 1). Therefore, for every quorum Q there is a benign server siQ
such that siQ ∈ Q and siQ ∈ Q′. Hence, for every quorum Q property V2(〈ts, v〉, Q) holds by the
end of wr. Finally, by Lemma 11, rd does not select c, such that c.ts < ts.

Now we proceed to proving atomicity of read operations. First, we prove one auxiliary lemma.

Lemma 13. Previous slots. If a benign server stores c in slot 2 with class 2 quorum Q2, then
all benign servers from Q2 already stored c in slot 1. Similarly, if a benign server stores c in slot 3,
then all benign servers from some quorum already stored c in slot 2.

45

Proof. To prove the first part of the lemma, notice that, by code inspection, (a) benign servers can
store c in slot 2 with Q2 only upon receiving a wr〈c.ts, c.val, Set, 2〉 message with Q2 ∈ Set, and
(b) only the writer can send a wr〈∗, ∗, Set, 2〉 message with non-empty Set. Moreover, the writer
sends such a message with Q2 ∈ Set, only in the second round of write(c.val) after the writer
receives responses from all servers from Q2 in round 1 of write(c.val). Hence, by the end of round
1 of write(c.val), all benign servers from Q2 store c in slot 1.

The proof of the second part of the lemma closely follows that of the first part: (a) benign
servers can store c in slot 3 with Q2 only upon receiving a wr〈c.ts, c.val, ∗, 3〉 message, and (b) only
the writer can send such a message and only in the third round of write(c.val) after the writer
receives responses from all servers from some quorum in round 2 of write(c.val). Hence, by the end
of round 2 of write(c.val), all benign servers from some quorum store c in slot 2. ut

Lemma 14. read atomicity. If read rd is complete and it follows some complete read rd′ that
returns v′, then rd does not return a value older than v′.

Proof. Having Lemma 3 in mind, it is sufficient to show that the reader in rd does not select c,
such that c.ts < ts′, where c′ = 〈ts′, v′〉 was selected in rd′. Moreover, by Lemma 11, it is sufficient
to show that, in any execution ex and for every quorum Q, at least one of the properties Vj(c′, Q)
(for j ∈ {1, 2, 3}) holds by the time rd′ completes.

We consider three exhaustive cases, where : (1) rd′ completes in a single round, (2) rd′ completes
in 2 rounds, and (3) rd′ completes in at least 3 rounds.

1. If rd′ completes in a single round, then, at the end of the first round of rd′, BCD(c′, 1, rnd)
holds, for some rnd ∈ {1, 2, 3}. We consider the following three exhaustive cases where: (a)
BCD(c′, 1, 1) holds, (b) BCD(c′, 1, 2) holds, and (c) BCD(c′, 1, 3) holds.
(a) In case BCD(c′, 1, 1) holds in rd′, there are class 1 quorums Q1 and Q′1 (possibly Q1 =

Q′1), such that, by the end of round 1 of rd′, for all benign servers si ∈ Q1 ∩ Q′1 = X,
history[i, ts′, 1].pair = c′ in rd′. Hence, by the end of round 1 of rd′, all benign servers
si ∈ X stored c′ in slot 1. By Property 2 of RQS and Definition 5, an intersection of a pair
of class 1 quorums with any quorum Q is a large subset. Hence, X∩Q is a large subset, and,
by Lemma 2, every large subset is a superset of a basic subset that contains only benign
servers. Therefore, for every quorum Q there is a basic subset TQ that contains only benign
servers such that TQ ⊆ Q and TQ ⊆ X. Hence, for every quorum Q property V1(c′, Q) holds
by the time rd′ completes.

(b) In case BCD(c′, 1, 2) holds in rd′, there is class 1 quorum Q1 and class 2 quorum Q2, such
that, by the end of round 1 of rd′, for all benign servers si ∈ Q1∩Q2 = X, history[i, ts′, 2] =
〈c′,QC′′2 〉 and Q2 ∈QC′′2 in rd′. Hence, by the end of round 1 of rd′, all benign servers si ∈ X
stored c′ in slot 2 with Q2. Moreover, by Lemma 13, all benign servers from Q2 stored c′ in
slot 1. By Property 3 of RQS, in any execution ex, for every quorum Q at least one of the
properties P3a(Q2, Q,Bex) and P3b(Q2, Q,Bex) holds. We now show that if P3a(Q2, Q,Bex)
(resp., P3b(Q2, Q,Bex)) holds, then property V1(c′, Q) (resp., V2(c′, Q)) holds in ex by the
time rd′ completes:
i. In case P3a(Q2, Q,Bex) holds, TQ = Q2 ∩ Q \ Bex is a basic subset, that contains only

benign servers (by Property 3a of RQS and definition of Bex). Hence, all (benign) servers
in TQ stored c′ in slot 1, before rd′ completes. Since TQ ⊆ Q, V1(c′, Q) holds in ex by
the time rd′ completes.

46

ii. In case P3b(Q2, Q,Bex) holds, X ∩Q = Q1 ∩Q2 ∩Q * Bex, i.e., X ∩Q contains at least
one benign server si. Since si ∈ X, si stores c′ in slot 2 before rd′ completes. Moreover,
since si ∈ Q, V2(c′, Q) holds in ex by the time rd′ completes.

(c) In case BCD(c′, 1, 3) holds in rd′, there is class 1 quorum Q1 and a quorum Q′, such that, at
the end of round 1 of rd′, for all benign servers si ∈ Q1 ∩Q = X, history[i, ts′, 3].pair = c′.
Since, by Property 1 of RQS, any quorum intersection is a basic subset, by Lemma 1, X
contains at least one benign server si. Hence, by the end of the round 1 of rd′ benign server
sistore c′ in slot 3. Moreover, by Lemma 13, there is a quorum Q′′ such that all benign
servers from Q′′ stored c′ in slot 2 by the end of round 1 of rd′.
By Property 1 of RQS and Definition 5, Q′′ ∩ Q′ is a basic subset for every quorum Q.
Moreover, every basic subset contains at least one benign server (by Lemma 1). Therefore,
for every quorum Q there is a benign server sQ ∈ Q that stored c′ in slot 2 before rd′

completed. Hence, for every quorum Q property V2(c′, Q) holds by the end of rd′.
2. If rd′ completes in exactly two rounds, then ∃rnd ∈ {1, 2, 3} :BCD(c′, 2, rnd) 6= ∅ (line 41,

Fig. 7). We consider the following two exhaustive cases, where, in rd′: (a) BCD(c′, 2, rnd) 6= ∅
holds for rnd ∈ {2, 3}, and (b) BCD(c′, 2, rnd) 6= ∅ holds only for rnd = 1.

(a) In this case, a client that invoked rd′ received acks for its wr〈ts′, v′, ∅, 2〉 message from at
least a quorum Q′ of servers (when executing the writeback procedure in line 42). Hence,
by the time rd′ completes, all benign servers from Q′ store c′ in slot 2.
By Property 1 of RQS and Definition 5, for every quorum Q, Q′ ∩ Q is a basic subset.
Moreover, every basic subset contains at least one benign server (by Lemma 1). Therefore,
for every quorum Q there is a benign server sQ ∈ Q that stored c′ in slot 2 before rd′

completed. Hence, for every quorum Q property V2(c′, Q) holds by the end of rd′.
(b) In this case, since BCD(c′, 2, 1) 6= ∅, Q2 is an element of BCD(c′, 2, 1) if: (i) Q2 is a class

2 quorum that responded in the first round of rd′, and (ii) there is a class 1 quorum Q1,
such that, for all servers from X = Q1 ∩Q2, history[∗, ts′, 1].pair = c′.
In the round 2 of rd′ the reader sends the wr〈ts′, v′,BCD(c′, 2, 1), 1〉 to all servers. Since rd′

completes in exactly two rounds, all servers from some (class 2) quorum from BCD(c′, 2, 1)
respond in the round 2 of rd′ as well. Denote this quorum by Q′2. Then, all benign servers
from Q′2 store c′ in slot 1 with Q′2 by the time rd′ completes.
Since Q′2 is a class 2 quorum, by Property 3 of RQS, for every quorum Q, at least one of the
following two properties holds in any execution ex: (i) P3a(Q′2, Q,Bex), or (ii) P3b(Q′2, Q,Bex).
We now show that if P3a(Q′2, Q,Bex) (resp., P3b(Q′2, Q,Bex)) holds, then property V1(c′, Q)
(resp., V3(c′, Q)) holds in ex by the time rd′ completes:
i. In case P3a(Q′2, Q,Bex) holds, TQ = Q′2 ∩ Q \ Bex is a basic subset that contains only

benign servers (by Property 3a of RQS and definition of Bex). Since TQ ⊆ Q′2, all (benign)
servers from TQ stored c′ in slot 1, before rd′ completes. Since TQ ⊆ Q, V1(c′, Q) holds
in ex by the time rd′ completes.

ii. In case P3b(Q′2, Q,Bex) holds, Q′2 ∩ Q \ Bex is a set that contains only benign objects
si, such that every si stored c′ in slot 1 with Q′2 before rd′ completes. Hence, V3(c′, Q)
holds in ex by the time rd′ completes.

3. If rd′ completes in more than two rounds, then a client that invoked rd′ received acks for its
wr〈ts′, v′, ∅, 2〉 message from at least a quorum Q′ of servers (when executing the writeback
procedure in line 47, or line 49). Hence, by the time rd′ completes, all benign servers from Q′

store c′ in slot 2. Applying Property 1 of RQS, it is not difficult to see that for every quorum

47

Q, Q′∩Q contains at least one benign server. Hence, V1(c′, Q) holds for every quorum Q by the
time rd′ completes.

Theorem 7. Atomicity. The algorithm in Figures 5, 6 and 7 is atomic.

Proof. By Lemmas 5, 12 and 14. ut

We proceed to prove the wait-freedom property. In the remainder of the proof we denote by Qc a
quorum that contains only correct servers.

First we prove two important auxiliary lemmas that provide an intuition behind the liveness
of the algorithm provided a quorum that contains only correct servers, Qc. Roughly speaking,
the two lemmas state that it is not possible that, for some timestamp value pair c, valid2(c,Qc)
(resp., valid3(c,Qc)) holds yet that safe(c) does not hold (notice that valid1(c,Q) trivially implies
safe(c), for any quorum Q).

Lemma 15. Liveness of valid2 predicate. No server si ∈ Qc stores c in slot 2, before there is
a basic subset T ⊆ Qc such that all sj ∈ T stored c in slot 1.

Proof. By the algorithm’s pseudocode, (a) correct server si stores a pair c in slot 2 only after some
client sends wr〈c.ts, c.val, ∗, 2〉 to si. Moreover, before any client clnt sends wr〈c.ts, c.val, ∗, 2〉 to
servers, clnt has already received acks for its wr〈c.ts, c.val, ∗, 1〉 message from some quorum Q,
except in case of a writeback in line 42 of Fig. 7 (where clnt is a reader). In all other cases, Q∩Qc
is a basic subset (by Property 1 of RQS and Definition 5) — hence the lemma.

In the case of a writeback in line 42 of Fig. 7, assume, by contradiction, that there is a read rd
that issues a message wr〈c.ts, c.val, ∅, 2〉, such that there is no basic subset T ⊆ Qc, such that all
servers from T previously stored c in slot 1. Moreover, let rd be the first such read according to the
global clock that executes the writeback procedure in line 42, Fig. 7, at time t.

In this case, BCD(c, 2, 2) or BCD(c, 2, 3) are not empty in line 42 of rd. If BCD(c, 2, 2) (resp.,
BCD(c, 2, 3)) are not empty, then there exist two class 2 quorumQ2 andQ′2 (resp., a class 2 quorum
Q2 and a quorum Q) such that, all benign servers from Q2∩Q′2 = X (resp., Q2∩Q = X), stored c in
slot 2 (resp., slot 3). By Property 1 of RQS, Definition 5 and Lemma 1, there is at least one benign
server in X, i.e., by the end of round 1 of rd at least one benign server received wr〈c.ts, c.val, ∗, 2〉
(resp., wr〈c.ts, c.val, ∗, 3〉) from some client clnt′. By algorithm pseudocode and by our assumption
on rd, before time t, client clnt′ sends a message wr〈c.ts, c.val, ∗, 2〉 (resp., wr〈c.ts, c.val, ∗, 3〉) only
upon clnt′ received acks for its wr〈c.ts, c.val, ∗, 1〉 message from some quorum Q′ of servers (i.e.,
not in line 42 of Fig. 7). Note that Q′ ∩Qc = Tc is a desired basic subset. A contradiction.

Lemma 16. Liveness of valid3 predicate. Let Q2 be any class 2 quorum and B any element of
adversary structure B, such that P3b(Q2, Qc, B) holds. If every server si ∈ Q2 ∩Qc \B stored c in
slot 1 with Q2 (by time t), then (not later than t) there is a basic subset T such that T ⊆ Qc, and
all sj ∈ T stored c in slot 1.

Proof. Denote the set Q2 ∩ Qc \ B by X. Obviously, if X /∈ B, X is the desired basic subset and
the lemma follows. Therefore, in the following, we assume X ∈ B.

Since X ∈ B, by Property 3 of RQS, P3a(Q2, Qc, X) or P3b(Q2, Qc, X) must hold. However,
since Q2 ∩Qc \B = X, we have Q2 ∩Qc \X ⊆ B, i.e, P3a(Q2, Qc, X) does not hold.

The only step in the algorithm in which correct server si stores a pair c in slot 1 with some
actual quorum id (i.e., when historyi[c.ts, 1].sets changes the state) is when si receives a message

48

sent by a reader in the writeback call in line 44, Fig. 7 (recall here that readers are benign). Since
all servers from X (recall here that servers from X are correct, since X ⊆ Qc) stored c in slot 1
with Q2 (by time t), then there is at least one read rd that executes the writeback procedure in
line 44 and sends wr〈c.ts, c.val,Set, 1〉 (line 60), where Q2 ∈ Set. In this case, BCD(c, 2, 1) =
Set is not empty (since Q2 ∈ Set) in line 41 of rd, and the condition in line 42 is not satisfied.
Since BCD(c, 2, 1) is not empty in rd, then (line 2, Fig. 7) there exists class 1 quorum Q1 such
that for every benign server sj in Q1 ∩Q2, history[j, c.ts, 1].pair = c holds in rd (notice that this
holds before time t). Therefore, every benign server from Q1 ∩Q2 stored c in slot 1 before time t.
Hence, if Y = Q1 ∩Q2 ∩Qc /∈ B, the lemma follows (Y is the desired basic subset). Therefore, in
the following, we assume Y ∈ B.

We have showed that (by time t), every server si from the set Z = X ∪ Y stored c in slot 1 and
that Z ⊆ Qc (since X ⊆ Qc and Y ⊆ Qc). We now show that Z is the desired basic subset, i.e., we
show that it is not possible that Z ∈ B.

Assume by contradiction that Z ∈B. Then, by Property 3 of RQS, P3a(Q2, Qc, Z) or P3b(Q2, Qc, Z)
must hold. However, since (i) P3a(Q2, Qc, X) does not hold and (ii) X ⊆ Z, P3a(Q2, Qc, Z) cannot
hold either (we have Q2 ∩ Qc \ Z ⊆ B). Moreover, since (i) P3b(Q2, Qc, Y) does not hold (since
Q1 ∩Q2 ∩Qc = Y) and (ii) Y ⊆ Z, P3b(Q2, Qc, Z) cannot hold either (we have Q1 ∩Q2 ∩Qc ⊆ Z).
A contradiction. ut

Theorem 8. (Wait-freedom.) The algorithm in Figures 5, 6 and 7 is wait-free.

Proof. The argument for the wait-freedom of a write operation is straightforward; in every round
of a write, the writer waits for acks from at least one quorum, so the writer is guaranteed to receive
the awaited acks eventually, since we assume existence of quorum Qc that contains only correct
servers. The timer that the writer awaits eventually expires and write eventually completes.

The argument for the wait-freedom of a read operation is more involved. We show that any read
operation invoked by a correct client does not block in line 34, Fig. 7; the remainder of the proof
is straightforward. We distinguish two cases: (1) the case where there is an infinite (unbounded)
number of write operations in the execution, and (2) the case where the writer issues a finite number
of write operations in the execution.

1. In this case, there is an infinite number of writes. Suppose, by contradiction, that rd never
completes. Let ts equal highest ts computed at the end of round 1 of rd, in line 29, Fig. 7.
Since the writer issues an unbounded number of writes, the writer will also issue a write with a
timestamp ts, writing some value v. Since all benign servers from some quorum Q store 〈ts, v〉
in slot 1 at some time t and, since by Property 1 of RQS Q∩Qc is a basic subset, safe(〈ts, v〉)
holds after rd receives at least one ack from every server from Qc sent after t. Moreover, for all
other pairs c with c.ts > ts, invalid(c) will also hold (since c.ts > highest ts = ts) and, hence,
highCand(〈ts, v〉) also eventually holds. Hence 〈ts, v〉 is eventually in C and rd terminates. A
contradiction.

2. In this case, there is a write operation with the highest timestamp. Let wr denote the last
complete write operation that writes v with timestamp ts (or v = ⊥, ts = 0 if there is none).
We denote by wr′ a possible later (incomplete) write that writes v′ with ts′.
Assume, by contradiction, that read rd never returns a value. First consider the case, where
ts < highest ts (where highest ts is computed in line 29, Fig 7).
Then, rd invokes rounds on all correct servers, sending rd messages infinitely many times. We
distinguish two cases: (a) there is no basic subset T ⊆ Qc such that all servers from T ever

49

stores c′ = 〈ts′, v′〉 in slot 1, and (b) there is a time t at which all servers from some basic subset
T ⊆ Qc store c′ in slot 1. In case (a), let t be the time at which the last correct server stores c′

in slot 1. Moreover, let t′ > t be the time at which rd receives at least one response from every
server from Qc sent after t (in both cases (a) and (b)).
(a) Since wr completed, there is a quorum Q such that all benign servers from Q have stored
〈ts, v〉 in slot 1. By Property 1 of RQS, Q ∩Qc = Tv is a basic subset. Hence, from time t′

onward, rd received at least one ack from all servers from Tv sent after wr completed and,
hence, safe(〈ts, v〉) holds.
Moreover, by Lemma 15 and assumption (a), V2(c,Qc) never holds for some pair c such
that c.ts > ts. Similarly, by Lemma 16 and assumption (a), V3(c,Qc) never holds for such
a pair c. Therefore, for every timestamp-value pair c, such that c.ts > ts, valid2(c,Qc) and
valid3(c,Qc) cannot hold in rd. Finally, by our assumption (a) no T ⊆ Qc stores c in slot 1,
such that c.ts > ts. Therefore, after time t′, for any value c, such that c.ts > ts, valid1(c,Qc)
does not hold. Hence, at the next iteration, invalid(c) holds for all c such that c.ts > ts
and, therefore, highCand(〈ts, v〉) holds; moreover, since safe(〈ts, v〉) also holds, 〈ts, v〉 is in
set C in line 33 and rd returns, a contradiction.

(b) In this case, after t′, there is a basic subset T ⊆ Qc for which history[∗, ts′, 1].pair =
〈ts′, v′〉. Hence, safe(〈ts′, v′〉) holds after t′. It is not difficult to see, since no subsequent
valid value is present in the system (since wr′ is the last write invoked), that for every
timestamp/value pair c′′ such that c′′.ts > c′.ts ∨ (c′′.ts = c′.ts ∧ c′′.val 6= c′.val) none of
the predicates valid1(c′′, Qc), valid2(c′′, Qc) or valid3(c′′, Qc) holds, i.e., invalid(c′′) holds.
Hence, highCand(〈ts′, v′〉) also holds. Thus, in the next iteration, 〈ts′, v′〉 ∈ C and read
returns: a contradiction.

Consider now the case, where ts ≥ highest ts. Since write wr (with timestamp ts) completed,
then a write with a timestamp highest ts also completed. It is not difficult to see (along the
lines of the proof of case (1)) that rd returns the value written with timestamp highest ts. ut

Theorem 9. (Best-Case Latency.) The storage algorithm in Figures 5, 6 and 7 is (m,QCm)–
fast for all m ∈ {1, 2, 3}.

Proof. For write operation, the proof is straightforward. For read, it is important to show that
whenever the read is synchronous and uncontended, lines 20-35 are executed only once. This proof
is given in the following. The rest of the proof is straightforward, by using the output of BCD (lines
1-2, Fig. 7).

Since there is no contention, let wr writing timestamp value pair c = 〈ts, v〉 be the last (com-
plete) write that precedes the read rd. Regardless of whether wr completed in 1, 2, or 3 rounds,
wr wrote c = 〈ts, v〉 into some quorum of servers Q. Moreover, no benign server stores any value
with a higher timestamp than ts by Lemma 6. Since rd is synchronous, a quorum Qc that contains
only correct server will respond in the first round of rd. By Property 1 of RQS and Definition 5
Qc ∩ Q = Tc is a basic subset that contains only correct servers, and, hence, safe(c) holds at the
end of round 1 of rd. It is not difficult to see that for any value c′.val with c′.ts > ts, none of
the predicates valid1(c′, Qc), valid2(c′, Qc) and valid3(c′, Qc) will hold. Hence, for any such times-
tamp/value pair invalid(c′) holds. Hence, at the end of round 1 of rd, highCand(c) also holds and
hence c ∈ C in line 33, Fig. 7. ut

50

B Correctness of the consensus algorithm

In this Appendix we prove the correctness of our consensus algorithm of Section 4.2. First, we give
few definitions.

Definition 6 (Value decided in a view). We say that a value v is Decided-2, Decided-3 or
Decided-4 in view w, if there is a benign process (acceptor or learner) p that eventually decides a
value by receiving (respectively):

– (Decided-2) update1〈v, w, ∗〉 messages from a class 1 quorum (line 51, Fig. 15).
– (Decided-3) update2〈v, w,Q2〉 messages from a class 2 quorum Q2 (line 52, Fig. 15).
– (Decided-4) update3〈v, w, ∗〉 messages from some quorum (line 53, Fig. 15).

We also say that a value v is decided in view w, if some benign process p Decided-m v in view
w (where m ∈ {2, 3, 4}).

Definition 7 (Prepares). We say that an acceptor ai prepares a value v in view w, if it eventually
receives prepare〈v, w, ∗, ∗〉 and executes lines 31-33, Fig. 15.

Definition 8 (Updates). We say that a benign acceptor ai updates a value v in view w, if it
eventually receives updatestep〈v, w, ∗〉 for some step ∈ {1, 2} and executes lines 34-38, Fig. 15.
More precisely, we say ai 1-updates (resp., 2-updates) v in w if step = 1 (resp., step = 2).

Definition 9 (Accepts). We say that a benign acceptor ai accepts a value v in view w, if it
prepares or updates v in view w.

We also make use of the Definition 5 of Appendix A (definition of basic and large subsets).
In addition, we introduce the following notation:

– We say that an invocation of function choose(∗, vProof,Q) is valid if vProof consists of valid
new view ack messages sent by acceptors from quorum Q (with slight abuse of language, we also
simply say choose(∗, vProof,Q) is valid);

– We denote all Byzantine acceptors in execution ex by Bex. We assume Bex ∈B for any execution
ex.

Lemma 17. Size of basic sets. In every execution of our consensus algorithm, any basic subset
contains at least one benign acceptor.

Proof. The lemma follows directly from the definition of a basic subset (Definition 5). ut

Lemma 18. Size of large sets. In every execution ex of our consensus algorithm. for any large
subset T2, there is a basic subset T1 ⊆ T2 that contains only benign acceptors.

Proof. By Definition 5, for any large subset T2, T2 \ Bex is a basic subset. By definition of Bex,
T2 \Bex contains only benign acceptors. Hence the lemma. ut

We first prove Validity.

Lemma 19. Validity of the choose function. If valid choose(v, vProof,Q) returns v such that
v is a candidate with view w, then at least one benign acceptor ai prepared v in w.

51

Proof. Assume Cand2(v, w,Q) holds (line 1, Fig. 13). In this case, every acceptor aj from the set
X = (Q1 ∩ Q) \ B (where B is not a basic subset and Q1 is a class 1 quorum) reported that it
prepared v in w. Note that, by Property 2 of RQS, Q1 ∩ Q is a large subset. By Lemma 18, X
contains at least one benign acceptor.

Assume now Cand3(v, w, char,Q) holds (for char ∈ {‘a‘, ‘b‘}). From lines 2-3, Fig. 13, it follows
that all acceptors from the set X = (Q2 ∩ Q) \ B, (where B is not a basic subset and Q2 is a
class 2 quorum) reported that they updated v in w (i.e., ∀aj ∈ X : vProof [aj].Update[1] = v and
w ∈ vProof [aj].Updateview[1]). Note that, by Property 1 of RQS, Q2 ∩Q is a basic subset. Hence,
by Definition 5, X is a non-empty set. In this case, vProof [aj].Updateproof [1, w] contains at least a
basic subset of signed update1〈v, w, ∗〉 messages. By Lemma 17 at least one of these signed messages
comes from a benign acceptor ai that indeed prepared v in view w.

The argument for the case where Cand4(v, w,Q) holds (line 5, Fig. 13) is very similar to the
case where predicate Cand3(v, w, char,Q) holds. ut

Theorem 10. (Validity) If a benign learner learns a value v and all proposers are benign, then
some proposer proposed v.

Proof. A benign learner learns a value v by receiving (1) update∗ messages (lines 51-53 and 60,
Fig. 15), or (2) by receiving a basic subset of decision messages (line 101, Fig. 15). In case (b), by
Lemma 17 and line 40, Fig. 15 at least one benign acceptor decided v before the learner learned v.

Hence, in both cases, if a learner learns v, then v was accepted in some view w (prepared or
updated) by benign acceptors from some quorum of acceptors. Since any quorum is a basic subset,
there is at least one such benign acceptor aj (by Property 1 of RQS, and Lemma 17). Note that aj
updates v in w only upon aj prepares v in w. We prove the following statement using induction on
view numbers: if a benign acceptor prepares v in view w, then some proposer proposed v.
Base Step: (w = initV iew)

Benign acceptors prepare value v in initV iew only if they receive a prepare〈v, initV iew, ∗, ∗〉
message from some proposer. Since all proposers are benign, no proposer sends a prepare message
containing v unless it proposes v. Hence, if some benign acceptor accepts v, v was indeed proposed
by some proposer.

Inductive Hypothesis (IH): For every view w,w′ > w ≥ initV iew, if a benign acceptor accepts v in
w, then some proposer proposed v.

Inductive Step: We prove that the statement is true for view w′. In view w′, benign acceptors accept
only values returned by valid choose(∗, vProof,Q). If choose(∗, vProof,Q) returns a candidate
value v, by Lemma 19, some benign acceptor prepared v in view w,w < w′, and by IH, v was
proposed by some proposer. If choose(∗, vProof,Q) returns in line 21, Figure 13, then the returned
value v is the initial proposal value of the leader of w′. We conclude that v was proposed by some
proposer. ut

Now we prove Agreement.

Lemma 20. After sending a new view ack message for view w, a benign acceptor cannot accept a
value v with view number w′ < w.

52

Proof. By line 21, Fig. 15 a benign acceptor cannot prepare a value with w′ < w. Moreover, a
benign acceptor ai updates a value v in some view w′′ only after aj prepares v in w′′. Hence the
lemma. ut

Lemma 21. If two values v and v′ are decided in view w, then v = v′.

Proof. Suppose v 6= v′. From Def. 6, all acceptors from some quorumQ (resp.,Q′) sent updatem〈v, w〉
(resp., updatem′〈v′, w〉) message, for some m,m′ ∈ {1, 2, 3}. Hence, all benign acceptors from Q
(resp., Q′) prepare v (resp., v′) in w. By Property 1 of RQS and Definition 5, Q ∩ Q′ is a basic
subset, which contains at least one benign acceptor ai (by Lemma 17). That is, there exists a benign
acceptor that prepared different values in the same view. A contradiction. ut

Lemma 22. Unique Cand2(v,w,Q). There are no two different values v and v′ such that, in
valid choose(∗, vProof,Q), both Cand2(v′, w,Q) and Cand2(v, w,Q) hold, for the same w.

Proof. Assume by contradiction that such values v and v′ exist. By definition of the predicate
Cand2() (line 1, Fig. 13), there are sets X = (Q1 ∩Q) \ B and X ′ = (Q′1 ∩Q) \ B′, such that (1)
B,B′ ⊆ acceptors and B and B′ are not basic subsets, (2) Q1 and Q′1 are class 1 quorums, and
(3) all acceptors from the set X (resp., X ′) prepared v (resp., v′) in w. By Property 2 of RQS,
Q1 ∩Q′1 ∩Q is a large subset. Applying Definition 5 we conclude that X ∩X ′ is a non-empty set.
Hence, there is an acceptor aj ∈ Q such that vProof [aj].P rep = v and vProof [aj].P rep = v′.
Hence, v = v′. A contradiction. ut

Lemma 23. Cand3(v,w,‘a‘,Q)/Cand4(v,w,Q). If for some value v Cand3(v, w, ‘a‘, Q) or Cand4(v, w,Q)
hold in valid choose(∗, vProof,Q), then all benign acceptors from some quorum Q′ prepared v in
w.

Proof. Assume first Cand3(v, w, ‘a‘, Q) holds. Then there is a set X = (Q2 ∩Q) \B′ such that B′

is not a basic subset and Q2 is a class 2 quorum and P3a(Q2, Q,B
′) holds. By Property 3a of RQS,

X is a basic subset. By Lemma 17 there is at least one benign acceptor in X that updated v in w.
Therefore, by lines 34-38 in Fig. 15, all benign acceptors from some quorum Q′ prepared v in w.

Assume now Cand4(v, w,Q) holds. Then there exists an acceptor aj ∈ Q such that:

– vProof [aj].Update[2] = v,
– w ∈ vProof [aj].Updateview[2], and
– vProof [aj].Updateproof [2, w] contains a basic subset of signatures of update2〈v, w, ∗〉 messages

including at least one from a benign acceptor ab.

Hence a benign acceptor ab updated v in w. Therefore, all benign acceptors from some quorum
Q′ prepared v in w. ut

Lemma 24. Impossible candidates after decision. If value v is decided in some view w, then,
in any valid choose(∗, vProof,Q), for some v′ 6= v, neither Cand3(v′, w, ‘a‘, Q) nor Cand4(v′, w,Q)
can hold.

Proof. In case v was decided in view w, by Definitions 6, 7 and 8, all benign acceptors from a
quorum Q prepared v in w.

Assume, by contradiction, that such value v′ 6= v exists, such that Cand3(v′, w, ‘a‘, Q) or
Cand4(v′, w,Q) hold and v′ 6= v. Then, by Lemma 23, all benign acceptors from some quorum
Q′ prepared v′ in w. By Property 1 of RQS, Y = Q∩Q′ is a basic subset that contains at least one
benign acceptor which prepared both v and v′ in w. A contradiction. ut

53

Lemma 25. If w is the lowest view number in which some value v is Decided-2, then no benign
acceptor ai prepares any value v′, v′ 6= v in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove the lemma for view w + 1. A benign acceptor ai prepares a value v′ in
some view W > w only if the valid choose(∗, vProof,Q) function in view W returns v′, without
setting the abort flag. Therefore, it is sufficient to prove that for a valid choose(∗, vProof,Q) in
view w + 1 returns v, or abort flag is set.

By Definitions 6 and 7, all benign acceptors from a class 1 quorum Q1 prepared v in w. By
definition of Bex, set X = (Q1∩Q) \Bex that contains only benign acceptors. By Lemma 20, every
acceptor ai ∈ X prepared v in w, before replying with the new view ack message to the leader of
the view w+ 1. In the meantime, no acceptor aj ∈ X prepared any other value, as this would mean
that aj would be in a higher view than w+ 1 when replying with new view ack for the view w+ 1,
which is impossible. Therefore, Cand2(v, w,Q) (line 1, Fig. 13) holds in choose(∗, vProof,Q), for
any Q. Notice that for every acceptor aj ∈ X, w ∈ vProof [aj].P repview.

By Lemma 19, it is not difficult to see that there is no value v′ such that Cand2(v′, w′, Q),
Cand3(v′, w′, ∗, Q) or Cand4(v′, w′, Q) holds for some w′ > w.

By Lemma 22, there is no value v′ 6= v such that Cand2(v′, w,Q) holds.
By Lemma 24, there is no value v′ 6= v such that (i) Cand3(v′, w, ‘a‘, Q) holds or (ii) Cand4(v′, w,Q)

holds.
Finally, in the following part of the proof, we show that it is not possible that both Cand3(v′, w, ‘b‘, Q)

and V alid3(v′, w, ‘b‘, Q) hold for v′ 6= v.

Assume, by contradiction, that there is such a value v′ 6= v such that both Cand3(v′, w, ‘b‘, Q)
and V alid3(v′, w, ‘b‘, Q). Since Cand3(v′, w, ‘b‘, Q) holds, there are class 2 quorum Q2 and B ∈
B such that C3(v′, w, ‘b‘, Q2, B,Q) holds (line 2, Fig. 13). Moreover, since V alid3(v′, w, ‘b‘, Q)
holds, all acceptors from Y = Q2 ∩ Q claim they prepared v′ in w (line 2, Fig. 13) or
do not have w in vProof [aj].P repview. Since we know that for all (benign) servers from
aj ∈ X = (Q1 ∩ Q) \ Bex, v ∈ vProof [aj].P rep and w ∈ vProof [aj].P repview, we conclude
X ∩ Y = ∅. Hence, we have Q1 ∩ Q2 ∩ Q \ Bex = ∅, i.e., P3b(Q2, Q,Bex) does not hold. By
Property 3 of RQS, P3a(Q2, Q,Bex) must hold.

Moreover, since C3(v′, w, ‘b‘, Q2, B,Q), all acceptors from Z = Q2 ∩ Q \ B claim that all
acceptors from Q2 prepared v′ in w. We distinguish two cases: (1) all acceptors from Z are
Byzantine, i.e., Z ⊆ Bex, and (2) there is a benign server in Z.

In case (1), since Z ⊆ Bex and P3a(Q2, Q,Bex) holds, we have P3a(Q2, Q, Z). Hence
Q2 ∩Q \ Z /∈ B. However, by definition of Z, Q2 ∩Q \ Z ⊆ B ∈ B. A contradiction.

In case (2), since Z contains at least one benign acceptor si, then all benign acceptors from
Q2 prepared v′ in w. By Property 2 of RQS, Q1 ∩ Q2 \ Bex is a basic subset that contains
only benign acceptors, that all prepared both v and v′ in w. A contradiction.

54

By inspection of choose() pseudocode, choose() returns v or abort flag is set.

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value different from
v in any view from w + 1 to w + k. We prove that no benign acceptor ai can prepare any value
different from v in the view w + k + 1.

Inductive Step: It is sufficient to prove that for a valid choose(∗, vProof,Q) in view w + k + 1
returns v, or abort flag is set.

By Definitions 6 and 7, all benign acceptors from a class 1 quorum Q1 prepared v in w. By IH,
all benign acceptors from Q1 can prepare only v in views w + 1 to w + k. Set X = (Q1 ∩ Q) \ B
contains only benign acceptors; by Lemma 20, no acceptor ai ∈ X prepares a value in a higher view
than w + k before sending a new view ack message to the leader of the view w + k + 1. Hence, by
definition of predicate Cand2(), Cand2(v, w,Q) holds in choose(∗, vProof,Q), for any Q. Notice
that for every acceptor aj ∈ X, w ∈ vProof [aj].P repview.

By Lemma 22, there is no other value v′ 6= v such that Cand2(v′, w,Q) holds.
By Lemma 19 and IH, it is not difficult to see that there is no value v′ 6= v such that

Cand2(v′, w′, Q), Cand3(v′, w′, ∗, Q) or Cand4(v′, w′, Q) holds for some w′ > w.
By Lemma 24, there is no value v′ 6= v such that Cand3(v′, w, ‘a‘, Q) holds or Cand4(v′, w,Q)

holds.
Finally, exactly as in the Base Step, it can be shown that it is not possible that both Cand3(v′, w, ‘b‘, Q)

and V alid3(v′, w, ‘b‘, Q) hold for v′ 6= v.
By inspection of choose() pseudocode, choose() returns v or abort flag is set. ut

Similarly to Lemma 25, we prove the following two lemmas using the properties of RQS and
induction on view numbers.

Lemma 26. If w is the lowest view number in which some value v is Decided-3, then no benign
acceptor ai prepares any value v′, v′ 6= v in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove the lemma for view w + 1. It is sufficient to prove that any valid
choose(∗, vProof,Q) in view w + 1 returns v, or abort flag is set.

By Definitions 6 and 8, all benign acceptors from a class 2 quorum Q2 updated-1 (and prepared)
v in w. By definition of Bex, set X = (Q2∩Q)\Bex contains only benign acceptors. By Lemma 20,
every acceptor ai ∈ X prepared v in w, before replying with the new view ack message to the leader
of the view w + 1. In the meantime, no acceptor aj ∈ X prepared any other value, as this would
mean that aj would be in the higher view then w + 1 when replying with new view ack for the
view w+1, which is impossible. Therefore, for some char ∈ {‘a‘, ‘b‘}, C3(v, w, char,Q2, Bex, Q) and
Cand3(v, w, char,Q) (lines 2-3, Fig. 13) hold in choose(∗, vProof,Q), for any Q.

By Lemma 19, it is not difficult to see that there is no value v′ such that Cand2(v′, w′, Q),
Cand3(v′, w′, ∗, Q) or Cand4(v′, w′, Q) holds for some w′ > w.

By Lemma 24, there is no value v′ 6= v such that Cand3(v′, w, ‘a‘, Q) holds or Cand4(v′, w,Q)
holds.

We distinguish two cases: (a) Cand3(v′, w′, ‘a‘, Q), and (b) Cand3(v′, w′, ‘b‘, Q) holds. By in-
spection of choose() pseudocode, in case (a) choose() returns v, whereas in case (b) either choose()
returns v or abort flag is set.

55

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value different from
v in any view from w + 1 to w + k. We prove that no benign acceptor ai can prepare any value
different from v in the view w + k + 1.

Inductive Step: It is sufficient to prove that any valid choose(∗, vProof,Q) in view w+k+1 returns
v, or abort flag is set.

By Definitions 6 and 8, all benign acceptors from a class 2 quorum Q2 update-2 v in w. By
IH, all benign acceptors from Q2 can update-2 only v in views w + 1 to w + k. All acceptors from
X = (Q2 ∩Q) \Bex are benign and, by Lemma 20, no acceptor ai ∈ X prepares (nor 1-updates) a
value in a higher view than w+ k before sending a new view ack message to the leader of the view
w + k + 1. Hence, for every ai ∈ X vProof [ai].Update[1] = v and w ∈ vProof [ai].Updateview[1].
Hence, by definition of predicate Cand3(), for some char ∈ {‘a‘, ‘b‘}, C3(v, w, char,Q2, Bex, Q) and
Cand3(v, w, char,Q) hold in choose(∗, vProof,Q), for any Q.

By Lemma 19 and IH, it is not difficult to see that there is no value v′ 6= v such that
Cand2(v′, w′, Q), Cand3(v′, w′, ∗, Q) or Cand4(v′, w′, Q) holds for some w′ > w.

By Lemma 24, there is no value v′ 6= v such that Cand3(v′, w, ‘a‘, Q) holds or Cand4(v′, w,Q)
holds.

We distinguish two cases: (a) Cand3(v′, w′, ‘a‘, Q), and (b) Cand3(v′, w′, ‘b‘, Q) holds. By inspec-
tion of choose() pseudocode, in case (a) choose() returns v, whereas in case (b) it either returns v
or abort flag is set. ut

Lemma 27. If w is the lowest view number in which some value v is Decided-4, then no benign
acceptor ai prepares any value v′, v′ 6= v in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove the lemma for view w + 1. It is sufficient to prove that any valid
choose(∗, vProof,Q) in view w + 1 returns v.

By Definitions 6 and 8, all benign acceptors from some quorum Q3 updated-2 v in w. By
Property 1 of RQS X = Q3 ∩Q is a basic subset that contains at least one benign acceptor ai (by
Lemma 17). By Lemma 20, ai updated-2 v in w, before replying with the new view ack message
to the leader of the view w + 1. In the meantime, aj did not prepare (nor update-2) any other
value, as this would mean that aj would be in the higher view then w + 1 when replying with
new view ack for the view w + 1, which is impossible. Therefore, Cand4(v, w,Q) (line 5, Fig. 13)
holds in choose(∗, vProof,Q), for any Q.

By Lemma 19, it is not difficult to see that there is no value v′ such that Cand2(v′, w′, Q),
Cand3(v′, w′, ∗, Q) or Cand4(v′, w′, Q) holds for some w′ > w.

By Lemma 24, there is no value v′ 6= v such that Cand3(v′, w, ‘a‘, Q) holds or Cand4(v′, w,Q)
holds.

By inspection of choose() pseudocode, choose() returns v.

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value different from
v in any view from w + 1 to w + k. We prove that no benign acceptor ai can prepare any value
different from v in the view w + k + 1.

Inductive Step: It is sufficient to prove that any valid choose(∗, vProof,Q) in view w+k+1 returns
v.

56

By Definitions 6 and 8, all benign acceptors from some quorum Q3 updated-2 v in w. By IH, all
benign acceptors from Q3 can prepare (and, hence, update-2) only v in views w+1 to w+k. More-
over, X = Q3 ∩Q contains at least one benign acceptor aj (by Property 1 of RQS and Lemma 17).
Hence, by definition of predicate Cand4(), Cand4(v, w′, Q) holds in choose(∗, vProof,Q), for any
Q, for some w′, w + k ≥ w′ ≥ w.

By Lemma 19 and IH, it is not difficult to see that there is no value v′ 6= v such that
Cand2(v′, w′′, Q), Cand3(v′, w′′, ∗, Q) or Cand4(v′, w′′, Q) holds for some w′′ > w.

By Lemma 24, there is no value v′ 6= v such that Cand3(v′, w, ‘a‘, Q) holds or Cand4(v′, w,Q)
holds.

By inspection of choose() pseudocode, choose() returns v. ut

Theorem 11. (Agreement) No two benign learners learn different values.

Proof. If a benign learner learns a value then a value was decided in some view (by some benign
process). Indeed, a benign learner learns a value v by receiving (1) update∗ messages (lines 51-53,
and 60 Fig. 15), or (2) by receiving a basic subset of decision messages (line 101, Fig. 15). In case
(b), by Lemma 17 at least one benign acceptor decided v before the learner learned v.

It is not difficult to see that, if some value v′ is decided in view w, then some benign acceptor
prepared v′ in w. The theorem follows from Lemmas 21, 25, 26 and 27. ut

It is straightforward to show that our algorithm is (m,QCm)–fast, for m ∈ {1, 2, 3}.

The following two lemmas are critical for ensuring Termination property.
The first lemma proves that our algorithm does not block in lines 3-8, Fig. 15, in case some

quorum contains only correct acceptors.

Lemma 28. The abort flag is never set in valid choose(∗, vProof,Q).

Proof. It is sufficient to prove that if choose(∗, vProof,Q) sets abort flag, then Q contains at least
one Byzantine acceptor. We consider two exhaustive cases.

Case (a): choose() aborts in line 16, as there are two values v and v′ 6= v such that both Cand3(v, w, ‘b‘, Q)
and Cand3(v′, w, ‘b‘, Q) hold (for w = viewmax). In this case, by definition of predicate Cand3()
(lines 2-3, Fig. 13) there are acceptors ai, aj ∈ Q and class 2 quorums Q2 and Q′2 such that: (1) ai
claims that all (benign) acceptors from Q2 prepared v in w, (2) aj claims that all (benign) acceptors
from Q′2 prepared v′ in w. By Property 1 of RQS Q2 ∩ Q′2 is a basic subset, that by Lemma 17
contains at least one benign acceptor ax. Hence, ai claims that a benign acceptor ax prepared v
in w, while aj claims that ax prepared v′ 6= v in w. Hence, at least one acceptor from the set
{aj , ai} ⊂ Q is Byzantine.

Case (b): choose() aborts in line 18, as Cand3(v, w, ‘b‘, Q) holds but V alid3(v, w, ‘b‘, Q) does not
hold. Assume, by contradiction, that Q contains only benign acceptors. Notice that, if a benign
acceptor aj ∈ Q prepares v in view w, then the following predicate P (extracted from definition of
V alid3(v, w, ‘b‘, Q), line 4, Fig. 13)

((vProof [aj].P rep = v) ∧ (w ∈ vProof [aj].P repview)) ∨ (w′ ∈ vProof [aj].P repview ⇒ w′ > w)

57

must hold in any valid choose(∗, vProof,Q) for view higher than w. To see this, consider lines
31-33, Fig. 15, and notice that when benign acceptor aj prepares v in w, Prep = v and w ∈ Prepview
(at aj). If this ceases to hold at some point, then aj prepared a different value in a view higher
than w, and Prepview contains only view numbers higher than w (line 32, Fig. 15).

Since Cand3(v, w, ‘b‘, Q) holds, but V alid3(v, w, ‘b‘, Q) does not hold, there is class 2 quorum
Q2 and B ∈ B, such that C3(v, w, ‘b‘, Q2, B,Q) holds, i.e., all acceptors in X = Q2 ∩Q \ B claim
that all acceptors from Q2 prepared v in view w. However, there is an acceptor ai in Q2 ∩Q (since
V alid3(v, w, ‘b‘, Q) does not hold) for which the above predicate P does not hold, i.e., ai never
prepared v in w. Obviously, some acceptor from ai ∪X ⊆ Q is Byzantine. A contradiction. ut

The second lemma proves that our algorithm does not block in lines 23-27, Fig. 15, in case
some quorum contains only correct acceptors. In the following proof, we explicitly make use of the
assumption of an eventually synchronous system, i.e., of an existence of a global stabilization time
GST after which the system is synchronous.

Lemma 29. (Availability of signatures.) If a correct acceptor aj issues a sign req〈Update[step], w, step〉
message (line 24, Fig. 15) after GST, then aj eventually receives signed updatestep〈Update[step], w, ∗〉
messages from some basic subset of acceptors.

Proof. A correct acceptor aj issues a sign req〈Update[step], w, step〉, only if (at aj) w ∈ Updateview[step],
i.e., only if aj updated a value v = Update[step] in w. In other words, before issuing a sign req mes-
sage, aj received updatestep〈v, w, ∗〉messages from some quorum Q and executed lines 34-38, Fig. 15.
In particular aj adds the identifier of the quorum Q to the UpdateQ[step, w] set (line 37, Fig. 15).
Without loss of generality, we can assume that aj sent a sign req〈v, w, step〉 message to acceptors
from quorum Q.

Let Qc be the quorum that contains only correct acceptors. By Property 1 of RQS, T = Q∩Qc
is a basic subset. Since T ⊆ Qc, T contains only correct acceptors. Since after GST the system is
synchronous, aj eventually receives the desired set of signatures. ut

We also need the following two simple lemmas. In the remainder of the paper, we denote by Qc
the quorum that contains only correct acceptors.

Lemma 30. If some process receives decision messages with the same value v from some quorum
of acceptors Q, then every correct learner learns a value.

Proof. Suppose, by contradiction, that some correct learner lk never learns a value.
Let Qc be the quorum that contains only correct acceptors. By Property 1 of RQS and as-

sumption on Qc, T = Qc ∪Q is a basic subset of correct acceptors that decided a value v. Denote
by t the time after which all acceptors from T have decided v. By lines 102-103, Fig. 15, and our
assumption that lk never learns the value, lk sends an infinite number of decision pull messages to
all acceptors. Those messages sent after max(t, GST) are received by all acceptors from T who
send decision messages to lk. These messages are received by lk and, by line 101 Fig. 15, lk learns
v — a contradiction. ut

Towards proving Termination, we first show that our algorithm (or, more precisely, its Locking
module) satisfies a weaker property we call Eventual Obstruction-Free Termination (EOFT), defined
as follows.

58

Definition 10. (Eventual Obstruction-Free Termination.) Assume a correct proposer pk pro-
poses a value at time tp, after GST (tp > GST) with the view number viewhigh such that: (a) pk is
the leader of viewhigh, (b) pk has a valid viewProof for viewhigh, (c) no value with a view number
higher than viewhigh is proposed up to time t, and (d) no proposer proposes a value (with a valid
viewProof) for the view higher than viewhigh by tp +DOF , where DOF = 7∆. Then, every correct
learner eventually learns a value.

Lemma 31. (EOFT.) The Locking module of our consensus algorithm satisfies Eventual Obstruction-
Free Termination property.

Proof. The following proof relies on our assumption that, after GST , a correct acceptor takes any
step in negligible time and that every message by a correct process p to a correct process q is
received within ∆.

By our assumption of an eventually synchronous system, all acceptors from Qc receive the
new view message for viewhigh sent by pk. Moreover, by assumptions (a)-(d) of Definition 10 we
conclude that the condition in line 21 (Fig. 15) is satisfied for every acceptor from Qc, which
then proceeds to execute lines 22-28. By Lemma 29, this part of the code is non-blocking. In case
some acceptor from Qc sends some sign req message (line 24), it will do so by tp + ∆, and simi-
larly send sign ack messages (line 29) by tp + 2∆. Hence, all acceptors from Qc execute line 28 of
Fig. 15 and send the new view ack messages to pk by tp + 3∆. Denote the set of these new view ack
messages sent by quorum Qc (and received by the proposer pk) by vProof . By Lemma 28, the
choose(∗, vProof,Qc) does not abort, but rather returns some value v. Therefore, at latest by
tp + 4∆, pk sends the prepare〈v, viewhigh, vProof,Qc〉 message to all acceptors — hence, all ac-
ceptors from Qc receive this message. By assumptions (a) and (d) of Definition 10, we conclude
that the condition in line 31, Fig. 15 is satisfied and that all acceptors from Qc prepare v in
viewhigh and send the update1〈v, viewhigh, ∅〉 message to all acceptors (and learners) by tp + 5∆.
By assumption (d) of Definition 10, given that all acceptors from Qc prepare v in viewhigh, we
conclude that all acceptors from Qc send an update2〈v, viewhigh, Qc〉 (by tp + 6∆), and, later, an
update3〈v, viewhigh, Qc〉 (by tp+7∆ = tp+DOF) to every acceptor and learner. As soon as a correct
learner receives a update3〈v, viewhigh, Qc〉 message from every acceptor of Qc it learns a value (lines
53 and 101, fig. 15), unless it already learned a value. ut

We are now ready to prove Termination. Basically, what is left to show is that, in every execution
in which a correct proposer proposes a value, eventually, the Election module ensures that the
assumptions of Definition 10 eventually hold.

Theorem 12. (Termination) If a correct proposer proposes a value, then eventually, every correct
learner learns a value.

Proof. Suppose, by contradiction, that some correct learner lk never learns a value even if some
correct proposer, say pk, proposes a value.

Note that, if pk proposes a value, by (1) lines 0 and 101-103, Fig. 14 and (2) the assump-
tion of an eventually synchronous system, either (a) all correct acceptors eventually trigger their
suspectT imeout (line 0, Fig. 14), or (b) pk receives a decision message from some quorum Q of
acceptors and halts (line 104, Fig. 14). In the latter case (case (b)), by Lemma 30, every correct
learner eventually learns a value — a contradiction.

We now focus on the case (a), where all correct acceptors eventually trigger suspectT imeout
(line 0, Fig. 14) – we denote this time by ttrigger. Let GST ′ = max(GST, ttrigger).

59

We distinguish two sub-cases: (i) when no correct acceptor stops its suspectT imeout perma-
nently (i.e., no correct acceptor executes the line 7, Fig. 14), and (ii) when some correct acceptor
stops its suspectT imeout permanently.

We first consider case (i). We define functions viewmin(t) = min{nextV iewai |ai ∈ Qc} at time t,
and, similarly, viewmax(t) = max{nextV iewai |ai ∈ Qc}. It is not difficult to see (lines 1-5, Fig. 14),
that, in case (i), at every correct acceptor aj , variable nextV iewaj is: (1) monotonically increasing,
(2) unbounded, and (3) non-skipping (it always increments by one). Hence, every correct acceptor
sends an infinite number of view change messages, for every view number from 1 (i.e., initV iew +
1) to ∞. Moreover, functions viewmin(t) and viewmax(t) are also monotonically increasing and
unbounded.

Let viewGST ′ = viewmax(GST ′). Hence, every correct proposer receives all view change mes-
sages sent by acceptors from Qc for view numbers viewGST ′ + 1 and higher. Therefore, every
correct proposer pk proposes a value in every view wk ≥ viewGST ′ + 1, such that k = (wk mod
|proposers|).

Note that a correct acceptor ai, on sending a view change message with a view number w, at
some time tw, triggers a timer equal to initT imeout ∗ 2w (lines 1-5, Fig. 14). Upon expiration of
this timeout, ai sends the subsequent view change message. Hence, the time between ai sends the
view change messages for view numbers w and w + 1 is at most initT imeout ∗ 2w.

Let t be any point time in time after GST ′. Let view(t) be the first view in which pk proposes
a value, such that view(t) > viewmax(t) + 1. Note that no acceptor from Qc sends a view change
message for a view higher than view(t) before TOF (t) = t+ initT imeout ∗ 2view(t). By Property 1
of RQS and the proposer code of an Election module, we conclude that no proposer can propose a
value with a valid viewProof and the view number higher than view(t) before TOF (t).

On the other hand, all acceptors from the quorum Qc will send the view change message for
the view(t) at latest by Tvc(t) = t + InitT imeout ∗ (2viewmin(t) + 2viewmin(t)+1 + . . . + 2view(t)−1).
These will be received by pk, which will propose a value with a view number view(t) at latest by
Tprop(t) = Tvc(t) +∆.

Therefore, pk proposes a value with view(t) at Tprop(t) > GST , and (a) pk is the leader of
view(t), (b) pk has a valid viewProof for view(t) (view change messages from Qc), (c) no value
with a view number higher than view(t) is proposed up to time Tprop(t), and (d) no proposer
proposes a value (with a valid viewProof) for the view higher than view(t) by TOF (t). Hence, in
order to apply Lemma 31 and reach contradiction, we need to show that there exist t′, such that
TOF (t′)− Tprop(t′) > DOF (where DOF = 7∆).

Since TOF (t′)−Tprop(t′) = initT imeout∗(2view(t′)−(2viewmin(t′)+2viewmin(t′)+1+. . .+2view(t′)−1))−
∆, TOF (t′) − Tprop(t′) > DOF ⇔ 2viewmin(t′)−1 > (DOF + ∆)/initT imeout = c, where c is a con-
stant. Since viewmin(t) is monotonically increasing and unbounded, such t′ exists.

In case (ii) the contradiction follows directly from Lemma 30. ut

60

C Errata

There was an omission in the conference version of this paper [22], related to the proofs of optimality
of atomic storage and consensus algorithms. This caused an error in the statement of Property 3
of RQS.

In the context of Property 3, Section 2.1, the definition in [22] stated that, for a given class 2
quorum Q2 and quorum Q, P3a(Q2, Q,B) holds for all B ∈ B, or P3b(Q2, Q,B) holds for all B ∈
B. Consequently, the algorithms presented in [22], stated as optimal, are actually not. On the other
hand, algorithms presented in this paper are optimal.

We would like to thank the anonymous reviewers for pointing out the above mentioned omission,
which allowed us to correct the mistakes from [22].

61

