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Abstract
Modern Byzantine fault-tolerant state machine replication
(BFT) protocols involve about 20,000 lines of challenging
C++ code encompassing synchronization, networking and
cryptography. They are notoriously difficult to develop, test
and prove. We present a new abstraction to simplify these
tasks. We treat a BFT protocol as a composition of instances
of our abstraction. Each instance is developed and analyzed
independently.

To illustrate our approach, we first show how our ab-
straction can be used to obtain the benefits of a state-of-
the-art BFT protocol with much less pain. Namely, we de-
velop AZyzzyva, a new protocol that mimics the behavior of
Zyzzyva in best-case situations (for which Zyzzyva was op-
timized) using less than 24% of the actual code of Zyzzyva.
To cover worst-case situations, our abstraction enables to use
in AZyzzyva any existing BFT protocol, typically, a classical
one like PBFT which has been tested and proved correct.

We then present Aliph, a new BFT protocol that outper-
forms previous BFT protocols both in terms of latency (by
up to 30%) and throughput (by up to 360%). The develop-
ment of Aliph required two new instances of our abstraction.
Each instance contains less than 25% of the code needed to
develop state-of-the-art BFT protocols.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed applications; C.4 [Performance of
Systems]: Fault tolerance; D.4.5 [Reliability]: Fault-tolerance;
D.4.7 [Organization and Design]: Distributed Systems

General Terms Algorithms, Design, Performance, Relia-
bility

Keywords Byzantine failures; performance; modularity.
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1. Introduction
State machine replication (SMR) is a software technique for
tolerating failures using commodity hardware. The critical
service to be made fault-tolerant is modeled by a state ma-
chine. Several, possibly different, copies of the state machine
are then placed on different nodes. Clients of the service ac-
cess the replicas through a SMR protocol which ensures that,
despite contention and failures, replicas perform client re-
quests in the same order.

Two objectives underly the design and implementation of
a SMR protocol: robustness and performance. Robustness
conveys the ability to ensure availability (liveness) and one-
copy semantics (safety) despite failures and asynchrony. On
the other hand, performance measures the time it takes to re-
spond to a request (latency) and the number of requests that
can be processed per time unit (throughput). The most robust
protocols are those that tolerate (a) arbitrarily large periods
of asynchrony, during which communication delays and pro-
cess relative speeds are unbounded, and (b) arbitrary (Byzan-
tine) failures of any client as well as up to one-third of the
replicas (this is the theoretical lower bound [24]). These are
called Byzantine-Fault-Tolerance SMR protocols, or simply
BFT protocols, e.g., PBFT, HQ and Zyzzyva [7, 13, 20]. The
ultimate goal of the designer of a BFT protocol is to ex-
hibit comparable performance to a non-replicated server un-
der “common” circumstances that are considered the most
frequent in practice. The notion of “common” circumstance
might depend on the application and underlying network, but
it usually means network synchrony, rare failures, and some-
times also the absence of contention.

Not surprisingly, even under the same notion of “com-
mon” case, there is no “one size that fits all” BFT protocol
[28]. According to our own experience, the performance dif-
ferences among the protocols can be heavily impacted by
the actual network, the size of the messages, the very na-
ture of the “common” case (e.g, contention or not); the ac-
tual number of clients, the total number of replicas as well
as the cost of the cryptographic libraries being used. This
echoes [28] which concluded for instance that “PBFT [7]
offers more predictable performance and scales better with



payload size compared to Zyzzyva [20]; in contrast, Zyzzyva
offers greater absolute throughput in wider-area, lossy net-
works”. In fact, besides all BFT protocols mentioned above,
one could design new protocols outperforming all others un-
der specific circumstances. We do indeed present an example
of a such protocol in this paper.

To deploy a BFT solution, a system designer will hence
certainly be tempted to adapt a state-of-the-art BFT proto-
col to the specific application/network setting, and possi-
bly keep adapting it whenever the setting changes. But this
can rapidly turn into a nightmare. All protocol implemen-
tations we looked at involve around 20,000 lines of (non-
trivial) C++ code, e.g., PBFT and Zyzzyva. Any change to
an existing protocol, although algorithmically intuitive, is
very painful. The changes of the protocol needed to opti-
mize for the “common” case have sometimes strong impacts
on the part of the protocol used in other cases (e.g., “view-
change” in Zyzzyva). The only complete proof of a BFT pro-
tocol we knew of is that of PBFT and it involves 35 pages
(even without using any formal language).1 This difficulty,
together with the impossibility of exhaustively testing dis-
tributed protocols [8] would rather plead for never changing
a protocol that was tested and proven correct, e.g., PBFT.

We propose in this paper a way to have the cake and eat
a big chunk of it. We present Abortable Byzantine faulT-
toleRant stAte maChine replicaTion (we simply write Ab-
stract): a new abstraction to reduce the development cost of
BFT protocols. Following the divide-and-conquer principle,
we view BFT protocols as a composition of instances of our
abstraction, each instance targeted and optimized for specific
system conditions. An instance of Abstract looks like BFT
state machine replication, with one exception: it may some-
times abort a client’s request.

The progress condition under which an Abstract instance
should not abort is a generic parameter.2 An extreme in-
stance of Abstract is one that never aborts: this is exactly
BFT. Interesting instances are “weaker” ones, in which an
abort is allowed, e.g., if there is asynchrony or failures (or
even contention). When such an instance aborts a client re-
quest, it returns an unforgeable request history that is used
by the client (proxy) to “recover” by switching to another
instance of Abstract. This new instance may commit subse-
quent requests until it itself aborts.

This paves the path to composability and flexibility of
BFT protocol design. Indeed, the composition of any two
Abstract instances is idempotent, yielding yet another Ab-
stract instance. Hence, and as we will illustrate in the paper,

1 It took Roberto De Prisco a PhD (MIT) to formally (using IOA) prove
the correctness of a state machine protocol that does not even deal with
malicious faults [14].
2 Abstract can be viewed as a virtual type; each specification of the this
progress condition defines a concrete type. These genericity ideas date back
to the seminal paper of Landin: The Next 700 Programming Languages
(CACM, March 1966).

the development (design, test, proof and implementation) of
a BFT protocol boils down to:

• Developing individual Abstract instances. This is usually
much simpler than developing a full-fledged BFT proto-
col and allows for very effective schemes. A single Ab-
stract instance can be crafted solely with its progress in
mind, irrespective of other instances.

• Ensuring that a request is not aborted by all instances.
This can be made very simple by reusing, as a black-box,
an existing BFT protocol as one of the instances, without
indulging into complex modifications.

To demonstrate the benefits of Abstract, we present two
BFT protocols:

1. AZyzzyva, a protocol that illustrates the ability of Ab-
stract to significantly ease the development of BFT pro-
tocols. AZyzzyva is the composition of two Abstract in-
stances: (i) ZLight, which mimics Zyzzyva [20] when
there are no asynchrony or failures, and (ii) Backup,
which handles the periods with asynchrony/failures by
reusing, as a black-box, a legacy BFT protocol (we lever-
aged PBFT). The code line count and proof size required
to obtain AZyzzyva are, conservatively, less than 1/4 than
those of Zyzzyva. In some sense, had Abstract been iden-
tified several years ago, the designers of Zyzzyva would
have had a much easier task devising a correct protocol
exhibiting the performance they were seeking. Instead,
they had to hack PBFT and, as a result, obtained a proto-
col that is way less stable than PBFT.

2. Aliph, a protocol that demonstrates the ability of Abstract
to develop novel efficient BFT protocols. Aliph achieves
up to 30% lower latency and up to 360% higher through-
put than state-of-the-art protocols. Aliph uses, along
with the Backup instance used in AZyzzyva, two new in-
stances: (i) Quorum, targeted for system conditions that
do not involve asynchrony/failures/contention, and (ii)
Chain, targeted for high-contention conditions without
failures/asynchrony. Quorum has a very low-latency (like
e.g., [1, 6, 15]) and it makes Aliph the first BFT protocol
to achieve a latency of only 2 message delays with as few
as 3f + 1 servers. Chain implements a pipeline message-
pattern, and relies on a novel authentication technique.
This makes Aliph the first BFT protocol with a number
of MAC operations at the bottleneck server that tends to
1 in the absence of asynchrony/failures. (This contradicts
the claim that the lower bound is 2 [20]3.) Interestingly,
each of Quorum and Chain could be developed indepen-

3 The erroneous bound comes probably from the fact that authors consid-
ered that at least one server had to both receive requests from client and
send replies to clients. This is not the case in Chain, which explains the
reduced number of MAC operations at the bottleneck server.



dently and required less than 25% of the code needed to
develop state-of-the-art BFT protocols.4

In the context of the paper, we assume a message-passing
distributed system using a fully connected network among
processes: clients and servers. The links between processes
are asynchronous and unreliable: messages may be delayed
or dropped (we speak of link failures). Certain periods of
executions can be synchronous (i.e., when there are no link
failures), meaning that any message m sent between two cor-
rect processes is delivered within a bounded delay ∆ (known
to sender and receiver) if the sender retransmits m until it is
delivered. Also, certain periods are contention-free, mean-
ing that no two clients seek to access in parallel to the same
(replicated) state machine. Processes are Byzantine fault-
prone; processes that do not fail are said to be correct. Any
number of clients and up to f out of 3f + 1 servers can be
Byzantine. A strong adversary can coordinate faulty nodes;
however, we assume that the adversary cannot violate cryp-
tographic techniques like collision-resistant hashing, mes-
sage authentication codes (MACs), and signatures.

The rest of the paper is organized as follows. Section 2
presents Abstract. We then describe and evaluate our BFT
protocols: AZyzzyva in Section 3 and Aliph in Section 4. We
discuss various aspects of our approach in Section 5. Sec-
tion 6 discusses the related work and concludes the paper.5

2. Abstract
We propose a new approach for the development of BFT
protocols. We view a BFT protocol as a composition of in-
stances of Abstract. Each instance is itself a protocol that
commits clients’ requests, like any state machine replication
(SMR) scheme, except if certain conditions are not satisfied,
in which case it can abort requests. These conditions, deter-
mined by the developer of the particular instance, capture the
progress semantics of that instance. They might depend on
the design goals and the environment in which a particular
instance is to be deployed. Each instance can be developed,
proved and tested independently, and this modularity comes
from two crucial properties of Abstract:

1. Switching between instances is idempotent: the compo-
sition of two Abstract instances yields yet another Ab-
stract instance.

2. BFT is nothing but a special Abstract instance — one
that never aborts.

4 Our code counts are in fact conservative since they do not discount for the
libraries shared between ZLight, Quorum and Chain, which amount to 10%
of a state-of-the-art BFT protocol.
5 For space constraints, the formal specification of Abstract and full imple-
mentation details are postponed to a companion technical report [17]. This
also includes the details on model checking Abstract idempotency using
TLA+ tools [23], pseudo-code and proofs of our protocols, and additional
performance measurements.

A correct implementation of an Abstract instance always
preserves BFT safety — this extends to any composition
thereof. The designer of a BFT protocol only has to make
sure that: a) individual Abstract implementations are cor-
rect, irrespectively of each other, and b) the composition of
the chosen instances is live: i.e. that every request will even-
tually be committed. We exemplify this later, in Sections 3
and 4. In this paper, we highlight the main characteristics of
Abstract. For space limitations, precise specification of Ab-
stract and our theorem on Abstract switching idempotency
are postponed to [17].
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Figure 1. Abstract operating principle.

Switching. Every Abstract instance has a unique identifier
(instance number) i. When an instance i commits a request,
i returns a state-machine reply to the invoking client. Like
any SMR scheme, i establishes a total order on all commit-
ted requests according to which the reply is computed for the
client. If, however, i aborts a request, it returns to the client
a digest of the history of requests h that were committed by
i (possibly along with some uncommitted requests); this is
called an abort history. In addition, i returns to the client
the identifier of the next instance (next(i)) which should
be invoked by the client: next is the same function across
all abort indications of instance i, and we say instance i
switches to instance next(i). In the context of BFT proto-
cols presented in this paper, we consider next to be a pre-
determined function (e.g., known to servers implementing
a given Abstract instance); we talk about deterministic or
static switching. However, this is not required by our speci-
fication; next(i) can be computed “on-fly” by the Abstract



implementation (e.g., depending on the current workload, or
possible failures or asynchrony) as long as next remains a
function. In this case, we talk about dynamic switching; this
is discussed in Section 5.

The client uses abort history h of i to invoke next(i); in
the context of next(i), h is called an init history. Roughly
speaking, next(i) is initialized with an init history, before it
starts committing/aborting requests. The initialization serves
to transfer to instance next(i) the information about the
requests committed within instance i, in order to preserve
total order among committed requests across instances.

Once i aborts some request and switches to next(i), i
cannot commit any subsequently invoked request. We im-
pose switching monotonicity: for all i, next(i) > i. Conse-
quently, Abstract instance i that fails to commit a request is
abandoned and all clients go from there on to the next in-
stance, never re-invoking i.

Illustration. Figure 1 depicts a possible run of a BFT sys-
tem built using Abstract. To preserve consistency, Abstract
properties ensure that, at any point in time, only one Ab-
stract instance, called active, may commit requests. Client
A starts sending requests to the first Abstract instance. The
latter commits requests #1 to #49 and aborts request #50, be-
coming inactive. Abstract appends to the abort indication an
(unforgeable) history (hist 1) and the information about the
next Abstract instance to be used (next = 2). Client A sends
to the new Abstract instance both its uncommitted request
(#50) and the history returned by the first Abstract instance.
Instance #2 gets initialized with the given history and exe-
cutes request #50. Later on, client B sends request #51 to
the first Abstract instance. The latter returns an abort indi-
cation with a possibly different history than the one returned
to client A (yet both histories must contain previously com-
mitted requests #1 to #49). Client B subsequently sends re-
quest #51 together with the history to the second abstract in-
stance. The latter being already initialized, it simply ignores
the history and executes request #51. The second abstract
instance then executes the subsequent requests up to request
#130 which it aborts. Client B uses the history returned by
the second abstract instance to initialize the third abstract
instance. The latter executes request #130. Finally, Client
C, sends request #131 to the third instance, that executes
it. Note that unlike Client B, Client C directly accesses the
currently active instance. This is possible if Client C knows
which instance is active, or if all three Abstract instances are
implemented over the same set of replicas: replicas can then,
for example, ‘tunnel’ the request to the active instance.

A view-change perspective. In a sense, an Abstract in-
stance number can be seen as a view number, used in clas-
sical BFT protocols (including [7, 20]).6 Like in these pro-
tocols, which merely reiterate the exact same sub-protocol

6 The opposite however does not hold, since multiple views of a given BFT
protocol can be captured within a single Abstract instance.

across views (possibly changing the server acting as leader),
the same Abstract implementations can be re-used (with in-
creasing instance numbers). However, unlike classical pro-
tocols, Abstract compositions allow entire sub-protocols to
be changed on a ‘view-change’ (i.e., during switching).

Byzantine clients. Clients that fail to comply with the
switching mechanism (e.g., by inventing/forging an init his-
tory) cannot violate the Abstract specification. Indeed, to be
considered valid, an init history of next(i) must be previ-
ously returned by the preceding Abstract i as an abort his-
tory. To enforce this causality, in practice, our Abstract com-
positions (see Sec. 3 and Sec. 4) rely on unforgeable digi-
tal signatures to authenticate abort histories in the presence
of potentially Byzantine clients. View-change mechanisms
employed in existing BFT protocols [7, 20], have similar
requirements: they exchange digitally signed messages. We
further discuss Byzantine clients in Section 5.

3. Illustrating Abstract: AZyzzyva
We illustrate how Abstract significantly eases the design,
implementation, and proof of BFT protocols with AZyzzyva.
This is a full fledged BFT protocol that mimics Zyzzyva [20]
in its “common case” (also called “best-case” i.e., when
there are no link or server failures). In “other cases” we
rely on Backup, an Abstract implementation with strong
progress guarantees that can be implemented on top of any
existing BFT protocol. In our implementation, we chose
PBFT [7] for it has been extensively tested and proved cor-
rect. We chose to mimic Zyzzyva, for it is known to be ef-
ficient, yet very difficult to implement [11]. Using Abstract,
we had to write, prove and test less than 24% of the Zyzzyva
code to obtain AZyzzyva.

In the “common case”, Zyzzyva executes the fast specu-
lative path depicted in Figure 2. A client sends a request to a
designated server, called primary (r1 in Fig. 2). The primary
appends a sequence number to the request and broadcasts
the request to all replicas. Each replica speculatively exe-
cutes the request and sends a reply to the client. All messages
in the above sequence are authenticated using MACs rather
than (more expensive) digital signatures. The client commits
the request if it receives the same reply from all 3f +1 repli-
cas. Otherwise, Zyzzyva executes a second phase that aims
at handling the case with link/server/client failures (“worst-
case”). Roughly, this phase (that AZyzzyva avoids to mimic)
consists of considerable modifications to PBFT [7], which
arise from the “profound effects” [20], that the Zyzzyva
“common-case” optimizations have on its “worst-case”. The
second phase is so complex that, as confessed by the authors
themselves [11], it is not entirely implemented in the cur-
rent Zyzzyva prototype. In fact, when this second phase is
stressed, due to its complexity and the inherent bugs that it
contains, the throughput of Zyzzyva drops to 0.



In the following, we describe how we build AZyzzyva,
assess the qualitative benefit of using Abstract and discuss
the performance of AZyzzyva.
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client
Number of MAC 
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Number of MACs 
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3f+1 2 1
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Figure 2. Communication pattern of ZLight.

3.1 Protocol overview
Our goal when building AZyzzyva using Abstract is to show
that we can completely separate the concerns of handling
the “common-case” and the “worst-case”. We thus use two
different Abstract implementations: ZLight and Backup.
Roughly, ZLight is a Abstract that guarantees progress in
the Zyzzyva “common-case”. On the other hand, Backup is
an Abstract with strong progress: it guarantees to commit an
exact certain number of requests k (k is itself configurable)
before it starts aborting.

We then simply construct AZyzzyva such that every odd
(resp., even) Abstract instance is ZLight (resp., Backup).
ZLight is first executed. When it aborts, it switches to
Backup, which commits the next k requests. Backup then
aborts subsequent requests and switches to (a new instance
of) ZLight, and so on.

Note that ZLight uses a lightweight checkpoint protocol
(shared with Aliph’s Quorum and Chain, Sec. 4) triggered
every 128 messages to truncate histories [17]. This protocol
is very similar to the one used in [7, 20].

In the following, we briefly describe ZLight and Backup;
full details and correctness proofs can be found in [17].

3.2 ZLight
ZLight implements Abstract with the following progress
property: it commits requests when (a) there are no server
or link failures, and (b) no client is Byzantine (simple
client crash failures are tolerated). When this property
holds, ZLight implements Zyzzyva’s “common-case” pat-
tern (Fig. 2), described earlier. Outside the “common-case”,
when a client does not receive 3f + 1 consistent replies, the
client sends a PANIC message to replicas. Upon reception of
this message, replicas stop executing requests and send back
a signed message containing their history (replicas will now
send the same abort message for all subsequent requests).
When the client receives 2f + 1 signed messages containing
replica histories, it can generate an abort history and switch
to Backup.

3.3 Backup
Backup is an Abstract implementation with a progress prop-
erty that guarantees exactly k ≥ 1 requests to be committed,
where k is a generic parameter (we explain our configura-
tion for k at the end of this section). We employ Backup in
AZyzzyva (and Aliph) to ensure progress outside “common-
cases” (e.g., under replica failures).

We implemented Backup as a very thin wrapper (around
600 lines of C++ code) that can be put around any existing
BFT protocol. In our C/C++ implementations, Backup is im-
plemented over PBFT [7], for PBFT is the most extensively
tested BFT protocol and it is proven correct. Other existing
BFT protocols that provide robust performance under fail-
ures, like Aardvark [11], are also very good candidates for
the Backup basis (unfortunately, the code of Aardvark is not
yet publicly available).

To implement Backup, we exploit the fact that any BFT
can totally order submitted requests and implement any
functionality on top of this total order. In our case, Backup is
precisely this functionality. Backup works as follows: it ig-
nores all the requests delivered by the underlying BFT pro-
tocol until it receives a request containing a valid init history,
i.e. an unforgeable abort history generated by the preceding
Abstract (ZLight in the case of AZyzzyva). At this point,
Backup sets its state by executing all the requests contained
in a valid init history it received. Then, it simply executes the
first k requests ordered by BFT (neglecting subsequent init
histories) and commits these requests. After committing the
kth request, Backup aborts all subsequent requests returning
the signed sequence of executed requests as the abort his-
tory (replica digital signature functionality assumed here is
readily present in all existing BFT protocols we know of).

Parameter k is generic and is an integral part of the
Backup progress guarantees. Our default configuration in-
creases k exponentially, with every new instance of Backup.
This ensures the liveness of the composition, which might
not be the case with, say, a fixed k in a corner case with very
slow clients (see [17] for more details on this issue). More
importantly, in the case of failures, we actually do want to
have a Backup instance remaining active for long enough,
since Backup is precisely targeted to handle failures. On the
other hand, to reduce the impact of transient link failures,
which can drive k to high values and thus confine clients to
Backup for a long time after the transient failure disappears,
we flatten the exponential curve for k to maintain k = 1 dur-
ing some targeted outage time. In our implementation, we
also periodically reset k. Dynamically adapting k to fit the
system conditions is appealing but requires further studies
and is out of the scope of this paper.

3.4 Qualitative assessment
In evaluating the effort of building AZyzzyva, we focus on
the cost of ZLight. Indeed, Backup, for which the additional
effort is small (around 600 lines of C++ code), can be reused



for other BFT protocols in our framework. For instance, we
use Backup in our Aliph protocol as well (Sec. 4).

Table 1 compares the number of pages of pseudo-code,
proofs and lines of code of Zyzzyva and ZLight. 7 The code
line comparison shows that to build ZLight we needed less
than 24% of the Zyzzyva line count (14,339 lines).

Using the same syntax as the one used in the original
Zyzzyva paper [20], ZLight requires approximately half a
page of pseudo-code, its plain-english proof requires about
1 page [17]. In comparison, the pseudo-code of Zyzzyva
(without checkpointing) requires 4.5 pages [21], making it
about 9 times bigger than that of ZLight. Due to the com-
plexity of Zyzzyva, the authors first presented a version us-
ing signatures and then explained how to modify it to use
MACs. The correctness proof of the Zyzzyva signature ver-
sion requires 4 (double-column) pages, whereas the proof
for the MAC version is only sketched.

Zyzzyva ZLight
Pages of pseudo-code 4,5 0,5
Pages of proofs > 4 1
Lines of code 14,339 3,358

Table 1. Complexity comparison of Zyzzyva and ZLight.

3.5 Performance evaluation
We have compared the performance of AZyzzyva and Zyzzyva
in the “common-case”, using the benchmarks described in
Section 4.2. Not surprisingly, AZyzzyva and Zyzzyva have
the exact same performance in this case. In this section, we
do thus focus on the cost induced by our switching mecha-
nism when the operating conditions are outside the common-
case (and ZLight aborts a request). We could not compare
against Zyzzyva. Indeed, as explained above, it has bugs in
the second phase in charge of handling faults, which makes
its impossible to evaluate the current prototype outside the
“common-case”.

To assess the switching cost, we perform the following
experiments: we feed the request history of ZLight with
r requests of size 1kB. We then issue 10,000 successive
requests. To isolate the cost of the switching mechanism,
we do not execute the ZLight common case; the measured
time comprises the time required (1) by the client to send
a PANIC message to ZLight replicas, (2) by the replicas to
generate and send a signed message containing their history,
(3) by the client to invoke Backup with the abort/init history,

7 Needless to say, such metrics have to be taken with a grain of salt: (i) these
protocols have been developed and proved by different researchers (note
however that Zyzzyva and ZLight do use the same code base, inherited from
PBFT [7]), and (ii) Zyzzyva does not fully implement the code required to
handle faults. Yet, we believe these metrics provide a useful intuition of
the difference in code and algorithmic complexity between Zyzzyva and
ZLight. We also managed a library of contains cryptographic functions,
networking code (to send/receive messages and manage sockets), and data
structures (e.g. maps, sets) and ported Zyzzyva on this library (roughly
7,500 lines of code).

and (4) by the (next) client to get the abort history from
Backup and initialize the next ZLight instance. Note that we
deactivate the functions in charge of updating the history of
ZLight, so that we ensure that for each aborted request, the
history contains r requests. We reproduced each experiment
three times and observed a negligible variance.

Figure 3 shows the switching time (in ms) as a function
of the history size when the number of tolerated faults equals
1. As mentioned above, ZLight uses a checkpointing mech-
anism triggered every 128 requests. To account for requests
that might be received by servers while they are perform-
ing a checkpoint, we assume that the history size can grow
up to 250 requests. We plot two different curves: one cor-
responds to the case when replicas do not miss any request.
The other one corresponds to the case when replicas miss
requests. More precisely, we assess the performance when
30% of the requests are absent from the history of at least
one replica. Not surprisingly, we observe that the switch-
ing cost increases with the history size and that it is slightly
higher in the case when replicas miss requests (as replicas
need to fetch the requests they miss). Interestingly, we see
that the switching cost is very reasonable. It ranges between
19.7ms and 29.2ms, which is low provided faults are sup-
posed to be rare in the environment for which Zyzzyva has
been devised.

Furthermore, we observe that the switching cost grows
faster than linearly. We argue that this is not an issue since
the number of requests in histories is bounded by check-
pointing. Finally, the switching cost could easily be higher
in the case of a real application performing actual computa-
tions on requests that are reordered by the switching mech-
anism. However, it is important to notice that this extra-cost
would also be present in Zyzzyva, induced by the request
replay during view-changes.
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4. Putting Abstract to Work: Aliph
In this section, we demonstrate how we can build novel,
very efficient BFT protocols, using Abstract. Our new pro-
tocol, called Aliph, achieves up to 30% lower latency and up
to 360% higher throughput than state-of-the-art protocols.
The development of Aliph consisted in building two new in-
stances of Abstract, each requiring less than 25% of the code
of state-of-the-art protocols, and reusing Backup (Sec. 3.3).
In the following, we first describe Aliph and then we evaluate
its performance.

4.1 Protocol overview
The characteristics of Aliph are summarized in Table 2,
considering the metrics of [20]. In short, Aliph is the first
optimally resilient protocol that achieves a latency of 2 one-
way message delays when there is no contention. It is also
the first protocol for which the number of MAC operations at
the bottleneck replica tends to 1 (under high contention when
batching of messages is enabled): 50% less than required by
state-of-the-art protocols.

Aliph uses three Abstract implementations: Backup (in-
troduced in Sec. 4.3), Quorum and Chain (both described
below). A Quorum instance commits requests as long as
there are no: (a) server/link failures, (b) client Byzantine fail-
ures, and (c) contention. Quorum implements a very simple
communication pattern and gives Aliph the low latency fla-
vor when its progress conditions are satisfied. On the other
hand, Chain provides exactly the same progress guarantees
as ZLight (Sec. 3.2), i.e., it commits requests as long as there
are no server/link failures or Byzantine clients. Chain im-
plements a pipeline pattern and, as we show below, allows
Aliph to achieve better peak throughput than all existing pro-
tocols. Both Quorum and Chain share the panicking mech-
anism with ZLight, which is invoked by the client when it
fails to commit the request.

Aliph uses the following static switching ordering to or-
chestrate its underlying protocols: Quorum-Chain-Backup-
Quorum-Chain-Backup−etc. Initially, Quorum is active. As
soon as it aborts (e.g., due to contention), it switches to
Chain. Chain commits requests until it aborts (e.g., due to
asynchrony). Aliph then switches to Backup, which executes
k requests (see Sec. 3.3). When Backup commits k requests,
it aborts, switches back to Quorum, and so on.

In the following, we first describe Quorum (Sec. 4.1.1)
and Chain (Sec. 4.1.2) (full details and correctness proofs
can be found in [17]). Then, we discuss some system-level
optimizations of Aliph (Sec. 4.1.3).

4.1.1 Quorum
Quorum implements a very simple communication pattern
(see Fig. 4); it requires only one round-trip of message ex-
change between a client and replicas to commit a request.
Namely, the client sends the request to all replicas that spec-
ulatively execute it and send a reply to the client. As in

ZLight, replies sent by replicas contain a digest of their his-
tory. The client checks that the histories sent by the 3f + 1
replicas match. If that is not the case, or if the client does
not receive 3f + 1 replies, the client invokes a panicking
mechanism. This is the same as in ZLight (Sec. 3.2): (i) the
client sends a PANIC message to replicas, (ii) replicas stop
executing requests on reception of a PANIC message, (iii)
replicas send back a signed message containing their his-
tory. The client collects 2f + 1 signed messages containing
replica histories and generates an abort history. Note that,
unlike ZLight, Quorum does not tolerate contention: concur-
rent requests can be executed in different orders by different
replicas. This is not the case in ZLight, as requests are or-
dered by the primary.

r1

r2

r3

r4

client
Number of MAC 

operations per process

Number of MACs 
carried by a message

3f+1 2 3f+1

1 1

Figure 4. Communication pattern of Quorum.

The implementation of Quorum is very simple. It requires
3200 lines of C code (including panicking and checkpoint
libraries). Quorum makes Aliph the first BFT protocol to
achieve a latency of 2 one-way message delays, while only
requiring 3f + 1 replicas (Q/U [1] has the same latency but
requires 5f +1 replicas). Given its simplicity and efficiency,
it might seem surprising not to have seen it published earlier.
We believe that Abstract made that possible because we
could focus on weaker (and hence easier to implement)
Abstract specifications, without caring about (numerous)
difficulties outside the Quorum “common-case”.

4.1.2 Chain
Chain organizes replicas in a pipeline (see Fig. 5). All repli-
cas know the fixed ordering of replica IDs (called chain or-
der); the first (resp., last) replica is called the head (resp.,
the tail). Without loss of generality we assume an ascending
ordering by replica IDs, where the head (resp., tail) is replica
r1 (resp., r3f+1).

In Chain, a client invokes a request by sending it to the
head, who assigns sequence numbers to requests. Then, each
replica ri forwards the message to its successor −→ri , where
−→ri = ri+1. The exception is the tail whose successor is the
client: upon receiving the message, the tail sends the reply to
the client. Similarly, replica ri in Chain accepts a message
only if sent by its predecessor ←−ri , where ←−ri = ri−1; the
exception is the head, which accepts requests only from the
client.



PBFT Q/U HQ Zyzzyva Aliph
Number of replicas 3f+1 5f+1 3f+1 3f+1 3f+1
Throughput (MAC ops at bottleneck server) 2+ 8f

b 2+4f 2+4f 2+ 3f
b 1+ f+1

b

Latency (1-way messages in the critical path) 4 2 4 3 2

Table 2. Characteristics of state-of-the-art BFT protocols. Row 1 is the number of replicas. Row 2 is the throughput in terms of
number of MAC operations at the bottleneck replica (assuming batches of b requests). Row 3 is the latency in terms of number
of 1-way messages in the critical path. Bold entries denote protocols with the lowest known cost.
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Figure 5. Communication pattern of Chain.

The behavior of Chain, as described so far, is very sim-
ilar to the crash-tolerant protocol described in [29]. We tol-
erate Byzantine failures by ensuring: (1) that the content of
a message is not modified by a malicious replica, (2) that no
replica in the chain is bypassed, and (3) that the reply sent by
the tail is correct. To provide those guarantees, our Chain re-
lies on a novel authentication method we call chain authen-
ticators (CAs). CAs are lightweight MAC authenticators, re-
quiring processes to generate (at most) f + 1 MACs (in con-
trast to 3f + 1 in traditional authenticators). CAs guarantee
that, if a client commits request req, every correct replica
executed req. CAs, along with the inherent throughput ad-
vantages of a pipeline pattern, are key to Chain’s dramatic
throughput improvements over other BFT protocols. We de-
scribe below how CAs are used in Chain.

Processes generate CAs in order to authenticate the mes-
sages they send. Each CA contains MACs for a set of pro-
cesses called successor set. The successor set of clients con-
sists of the f + 1 first replicas in the chain. The successor
set of replica ri depends on its position i: (a) for the first 2f
replicas, the successor set comprises the next f + 1 replicas
in the chain, whereas (b) for other replicas (i > 2f ), the suc-
cessor set comprises all subsequent replicas in the chain, as
well as the client. Dually, when a process receives a message
m it verifies m, i.e., it checks whether m contains a correct
MAC from the processes it is in the successor set of. For in-
stance, process p1 verifies that the message contains a valid
MAC from process p0 and the client, whereas the client ver-
ifies that the reply it gets contains a valid MAC from the last
f+1 replicas in the chain. Finally, to make sure that the reply
sent by the tail is correct, f processes that precede the tail in
the chain append a digest of the response to the message.

When the client receives a correct reply, it commits it. On
the other hand, when the reply is not correct, or when it does
not receive any reply (e.g., due to the Byzantine tail which
discards the request), the client broadcasts a PANIC message
to replicas. As in ZLight and Quorum, when replicas receive
a PANIC message, they stop executing requests and send
back a signed message containing their history. The client
collects 2f + 1 signed messages containing replica histories
and generates an abort history.

Chain’s implementation requires 3300 lines of code (with
panic and checkpoint libraries). Moreover, it is the first pro-
tocol in which the number of MAC operations at the bottle-
neck replica tends to 1. This comes from the fact that, under
contention, the head of the chain can batch requests. Head
and tail do thus need to read (resp. write) a MAC from (resp.
to) the client, and write (resp. read) f + 1 MACs for a batch
of requests. Thus for a single request, head and tail perform
1+ f+1

b MAC operations. Note that all other replicas process
requests in batch, and have thus a lower number of MAC op-
erations per request. State-of-the-art protocols [7, 20] do all
require at least 2 MAC operations at the bottleneck server
(with the same assumption on batching). The reason why
this number tends to 1 in Chain can be intuitively explained
by the fact that these are two distinct replicas that receive the
request (the head) and send the reply (the tail).

4.1.3 Optimizations
When a Chain instance is executing in Aliph, it commits
requests as long as there are no server or link failures. In
the Aliph implementation we benchmark in the evaluation,
we slightly modified the progress property of Chain so that
it aborts requests as soon as replicas detect that there is no
contention (i.e. there is only one active client since at least
2s). Moreover, Chain replicas add an information in their
abort history to specify that they aborted because of the lack
of contention. We slightly modified Backup, so that in such
case, it only executes one request and aborts. Consequently,
Aliph switches to Quorum, which is very efficient when there
is no contention. Finally, in Chain and Quorum we use the
same checkpoint protocol as in ZLight.

4.2 Evaluation
This section evaluates the performance of Aliph. For lack
of space, we focus on experiments without failures (of pro-
cesses or links), since we compare to protocols that are



known to perform well in the common-case — PBFT [7],
Q/U [1] and Zyzzyva [20]. Assessment of the behavior of
Aliph when faults occur can be found in [17].

We first study latency, throughput, and fault scalabil-
ity using microbenchmarks [7, 20], varying the number of
clients. In these microbenchmarks clients invoke requests
in closed-loop, i.e., a client does not invoke a new request
before it gets a reply for a previous one.8 The benchmarks
are denoted x/y, where x is the request payload size (in kB)
and y is the reply payload size (in kB). We then proceed by
studying the performance of Aliph under faults. Finally, we
perform an experiment in which the input load dynamically
varies.

We evaluate PBFT and Zyzzyva because the former is
considered the “baseline” for practical BFT implementa-
tions, whereas the latter is considered state-of-the-art. More-
over, Zyzzyva systematically outperforms HQ [20]; hence,
we do not evaluate HQ. Finally, we benchmark Q/U as it is
known to provide better latency than Zyzzyva under certain
condition. Note that Q/U requires 5f + 1 servers, whereas
other protocols we benchmark only require 3f + 1 servers.

PBFT and Zyzzyva implement two optimizations: re-
quest batching by the primary, and client multicast (in which
clients send requests directly to all the servers and the pri-
mary only sends ordering messages). All measurements of
PBFT are performed with batching enabled as it always im-
proves performance. This is not the case in Zyzzyva. There-
fore, we assess Zyzzyva with or without batching depending
on the experiment. As for the client multicast optimization,
we show results for both configurations every time we ob-
serve an interesting behavior.

PBFT code base underlies both Zyzzyva and Aliph. To
ensure that the comparison with Q/U is fair, we evaluate its
simple best-case implementation described in [20].

We ran all our experiments on a cluster of 17 identical
machines, each equipped with a 1.66GHz bi-processor and
2GB of RAM. Machines run the Linux 2.6.18 kernel and are
connected using a Gigabit ethernet switch.

4.2.1 Latency
We first assess the latency in a system without contention,
with a single client issuing requests. The results for all mi-
crobenchmarks (0/0, 0/4 and 4/0) are summarized in Table 3
demonstrating the latency improvement of Aliph over Q/U,
PBFT, and Zyzzyva. We show results for a maximal number
of server failures f ranging from 1 to 3. Our results show that
Aliph consistently outperforms other protocols, since Quo-
rum is active when there is no contention. These results con-
firm the theoretical expectations (see Table 2, Sec. 4.1). The
results show that Q/U also achieves good latency with f = 1,
as Q/U and Quorum use the same communication pattern.

8 Although closed-loop microbenchmarks are not always representative of
the behavior of real systems [27], we use these microbenchmarks to enable
fair comparison with previously reported results, e.g. [7, 11, 20].

However, when f increases, performance of Q/U decreases
significantly. The reason is that Q/U requires 5f + 1 repli-
cas and both clients and servers perform additional MAC
computations compared to Quorum. Moreover, the signifi-
cant improvement of Aliph over Zyzzyva (31% at f = 1)
can be easily explained by the fact that Zyzzyva requires 3-
one-way message delays in the common case, whereas Aliph
(Quorum) only requires 2-one-way message delays.

4.2.2 Throughput
In this section, we present results obtained running the 0/0
and 4/0 microbenchmarks under contention (for lack of
space, results for the 0/4 benchmark are presented in [17]).
We do not present the results for Q/U since it is known to
perform poorly under contention. Notice that in all the ex-
periments presented in this section, Chain is active in Aliph.
The reason is that, due to contention, there is always a point
in time when a request sent to Quorum reaches replicas in a
different order, which results in a switch to Chain. As there
are no failures in the experiments presented in this section,
Chain executes all the subsequent requests.

Our results show that Aliph consistently and significantly
outperforms other protocols starting from a certain number
of clients that depends on the benchmark. Below this thresh-
old, Zyzzyva achieves higher throughput than other proto-
cols.

0/0 benchmark. Figure 6 plots the throughput achieved
in the 0/0 benchmark by various protocols when f = 1.
We ran Zyzzyva with and without batching. For PBFT, we
present only the results with batching, since they are substan-
tially better than results without batching. We observe that
Zyzzyva with batching performs better than PBFT, which it-
self achieves higher peak throughput than Zyzzyva without
batching (this is consistent with the results of [20, 28]).
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Moreover, Figure 6 shows that with up to 40 clients,
Zyzzyva achieves the best throughput. With more than
40 clients, Aliph starts to outperform Zyzzyva. The peak
throughput achieved by Aliph is 21% higher than that of



0/0 benchmark 4/0 benchmark 0/4 benchmark
f=1 f=2 f=3 f=1 f=2 f=3 f=1 f=2 f=3

Q/U 8 % 14,9% 33,1% 6,5 % 13,6% 22,3% 4,7% 20,2% 26%
Zyzzyva 31,6 % 31,2% 34,5% 27,7 % 26,7% 15,6% 24,3% 26% 15,6%
PBFT 49,1% 48,8% 44,5% 36,6 % 38,4 % 26% 37,6% 38,2% 29%

Table 3. Latency improvement of Aliph for the 0/0, 4/0, and 0/4 benchmarks.

Zyzzyva. The reason is that Aliph executes Chain, which
uses a pipeline pattern to disseminate requests. This pipeline
pattern brings two benefits: reduced number of MAC op-
erations at the bottleneck server, and better network usage:
servers send/receive messages to/from a single server.

Nevertheless, the Chain is efficient only if its pipeline
is fed, i.e. the link between any server and its successor in
the chain must be saturated. There are two ways to feed the
pipeline: using large messages (see the next benchmark), or
a large number of small messages (this is the case of 0/0
benchmark). Moreover, as in the microbenchmarks clients
invoke requests in closed-loop, it is necessary to have a large
number of clients to issue a large number of requests. This
explains why Aliph starts outperforming Zyzzyva only with
more than 40 clients.
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Figure 7. Response-time vs. throughput for the 0/0 bench-
mark (f=1).

Figure 7 plots the response-time of Zyzzyva (with and
without batching), PBFT and Aliph as a function of the
achieved throughput. We observe that Aliph achieves consis-
tently lower response-time than PBFT. This stems from the
fact that the message pattern of PBFT is a very complex one,
which increases the response time and limits the through-
put of PBFT. Moreover, up to the throughput of 37Kops/sec,
Aliph has a slightly higher response-time than Zyzzyva. The
reason is the pipeline pattern of Chain that results in a higher
response time for low to medium throughput, which stays
reasonable nevertheless. Moreover, Aliph scales better than
Zyzzyva: from 37Kops/sec, it achieves lower response time,
since the messages are processed faster due to the higher
throughput ensured by Chain. Hence, messages spend less

time in waiting queues. Finally, we observe that for very low
throughput, Aliph has lower response time than Zyzzyva.
This comes from the fact that Aliph uses Quorum when there
is no contention, which significantly improves the response-
time of the protocol.

4/0 benchmark. Figure 8 shows the results of Aliph, PBFT
and Zyzzyva for the 4/0 microbenchmark with f = 1.
Notice the logarithmic scale for the X axis, that we use to
better highlight the behavior of various protocols with small
numbers of clients. For PBFT and Zyzzyva, we plot curves
both with and without client multicast optimization. The
graph shows that with up to 3 clients, Zyzzyva outperforms
other protocols. With more than 3 clients, Aliph significantly
outperforms other protocols. Its peak throughput is about
360% higher than that of Zyzzyva. The reason why Aliph
is very efficient under high load and when requests are large
was explained earlier in the context of the 0/0 benchmark.
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Notice also the interesting drop in the performance of
Zyzzyva and PBFT when client multicast optimization is
used (Fig. 8). This is to be contrasted with the case when
the primary forwards requests, where the performance of
PBFT and Zyzzyva remain almost constant after the peak
throughput has been reached. These results may seem sur-
prising given that [7, 20] recommend to use the client mul-
ticast optimization when requests are large, in order to spare
the primary of costly operations request forwarding. Nev-
ertheless, these results can be explained by the fact that si-
multaneous multicasts of large messages by different clients
result in collisions and buffer overflows, thus requiring many



message retransmissions9 (there is no flow control in UDP).
This explains why enabling the concurrent client multicasts
drastically reduces performance. On the other hand, when
the primary forwards messages, there are fewer collisions,
which explains the better performance we observe.

Impact of the request size. In this experiment we study
how protocols are impacted by the size of requests. Figure 9
shows the peak throughput of Aliph, PBFT and Zyzzyva as a
function of the request size for f = 1. To obtain the peak
throughput of PBFT and Zyzzyva, we benchmarked both
protocols with and without client multicast optimization and
with different batching sizes for Zyzzyva. Interestingly, the
behavior we observe is similar to that observed using simula-
tions in [28]: differences between PBFT and Zyzzyva dimin-
ish with the increase in payload. Indeed, starting from 128B
payloads, both protocols have almost identical performance.
Figure 9 also shows that Aliph sustains high peak through-
put with all message sizes, which is again the consequence
of Chain being active under contention.
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Fault scalability. One important characteristic of BFT pro-
tocols is their behavior when the number of tolerated server
failures f increases. Figure 10 depicts the performance of
Aliph for the 4/0 benchmark when f varies between 1 and
3. We do not present results for PBFT and Zyzzyva as their
peak throughput is known to suffer only a slight impact [20].
Figure 10 shows that this is also the case for Aliph. The peak
throughput at f = 3 is only 3,5% lower than that achieved
at f = 1. We also observe that the number of clients that
Aliph requires to reach its peak throughput increases with
f . This can be explained by the fact that Aliph uses Chain
under contention. The length of the pipeline used in Chain
increases with f . Hence, more clients are needed to feed the
Chain and reach the peak throughput.

9 Note that similar performance drops with large UDP packets have already
been observed in the context of broadcast protocols. For instance, a recent
study made by the authors of the JGroups toolkit showed that with 5K
messages, their TCP stack achieves up to 5 times the throughput of their
UDP stack, even if the latter includes some flow control mechanisms.
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the Aliph throughput.

4.2.3 Performance in case of faults
In this section, we assess the behavior of Aliph when a
replica crashes. The experiment proceeds as follows. We
consider 4 replicas, (f = 1) and one client that issues 15,000
requests. After the client sends 2,000 requests, we crash one
replica, which recovers 10s later. Consequently, during 10s,
only 3 replicas are active. We compare two strategies: in the
first strategy, when Aliph switches to Backup, Backup always
executes k = 1 request. In the second strategy, when Aliph
switches to Backup, it executes k = 2i, where i is the num-
ber of invocations of Backup since the beginning of the ex-
periment. In principle, Aliph combines both strategies by ex-
ponentially increasing k, while maintaining the exponential
curve initially very flat for reasons discussed in Section 3.3.

The behavior of Aliph with the first strategy is depicted
in Figure 11. When only 3 replicas are active, Quorum and
Chain cannot commit requests and Aliph switches to Backup
for every single request. We depict on the Y axis both the
throughput achieved by Aliph and the periods during which
Backup is active. Not surprisingly, the throughput of Aliph is
very low in this case.

Figure 12 shows the behavior of Aliph with the sec-
ond strategy. The throughput is significantly higher because
Backup is used to process an exponentially increasing num-
ber of requests. We can also observe that, although the 4
replicas are active at time t = 11s, Aliph switches back
to Quorum only around time t = 14s. This is due to the
fact that Backup had to process 8,192 requests before Aliph
could switch. We point out that if the replica is down for a
long time, Aliph will end up executing Backup for a very
large number of requests. This means that, during a very
long time period, the performance of Aliph will be that of
Backup. We therefore periodically reset the number k of
requests that Backup processes before aborting.

We would also like to remark that when many other kinds
of faults occur (e.g. malformed requests, MAC attacks [11]),
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Figure 12. Throughput under faults, when system switches
to Backup for 2i requests.

a similar behavior would be observed. This is further dis-
cussed in Section 5.

4.2.4 Dynamic workload
Finally, we study the performance of Aliph under dynamic
workload (i.e., fluctuating contention). We compare its per-
formance to that achieved by Zyzzyva and by Chain alone.
We do not present results for Quorum alone as it does not
perform well under contention. The experiments consists in
having 30 clients issuing requests of different sizes, namely,
0k, 0.5k, 1k, 2k, and 4k. Clients do not send requests all at
the same time: the experiment starts with a single client is-
suing requests. Then we progressively increase the number
of clients until it reaches 10. We then simulate a load spike
with 30 clients simultaneously sending requests. Finally, the
number of clients decreases, until there is only one client
remaining in the system.

Figure 13 shows the performance of Aliph, Zyzzyva, and
Chain. For each protocol, clients were invoking the same

number of requests. Moreover, requests were invoked after
the preceding clients have completed their bursts. First, we
observe that Aliph is the most efficient protocol: it completes
the experiment in 42s, followed by Zyzzyva (68.1s), and
Chain (77.2s). Up to time t = 15.8s, Aliph uses Quorum,
which performs much better than Zyzzyva and Chain. Start-
ing at t = 15.8, contention becomes too high for Quorum,
which switches to Chain. At time t = 31.8s, there is only
one client in the system. After 2s spent with only one client
in the system, Chain in Aliph starts aborting requests due to
the low load optimization (Sec. 4.1.3). Consequently, Aliph
switches to Backup and then to Quorum. This explains the
increase in throughput observed at time t = 33.8s. We also
observe on the graph that Chain and Aliph are more efficient
than Zyzzyva when there is a load spike: they achieve a peak
throughput about three times higher than that of Zyzzyva.
On the other hand, Chain and Aliph have slightly lower per-
formance than Zyzzyva under medium load (i.e. from 16s
to 26s on the Aliph curve). This suggests an interesting BFT
protocol that would combine Quorum, Zyzzyva, Chain and
Backup. However, this requires smart choices for dynamic
switching, e.g., between Zyzzyva and Chain. We believe that
building such a protocol is an interesting research topic.
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5. Discussion
Byzantine clients. Our speculative Abstract implementa-
tions, ZLight, Quorum and Chain, do not ensure progress if
clients are Byzantine. In fact it is very simple for a Byzantine
client to force switching in our speculative Abstract imple-
mentations by simply sending PANIC messages to replicas
(or by using big MAC attack [11]).10 However, this is inten-
tional. Namely, our lightweight Abstract instances focus on
guaranteeing progress in “common” cases typically consid-
ered in literature and their implementations are optimized for
such cases. Outside of these cases, e.g., in case of a Byzan-
tine client, the goal of AZyzzyva and Aliph is to switch to

10 It is important to notice here that Abstract specification does not require
that clients initiate switching.



Backup and stay there as long as possible, if the Byzantine
failure persists, to stabilize the system (cf. exponential in-
crease of Backup’s parameter k, Sec. 3.3).

The throughput of Backup is hence crucial for the through-
put of AZyzzyva and Aliph in presence of Byzantine clients.
In this light, it would be interesting to replace PBFT in
Backup with a more robust BFT protocol such as Aard-
vark [11] (this can be done modularly in our Backup con-
struction) with the goal of improving Aliph’s performance
under attacks (unfortunately, Aardvark code was not avail-
able). In addition, if clients’ Byzantine failures are indeed
a norm in a given system, new Abstract instances may be
designed with a goal of optimizing efficiency under failures;
these are outside of the scope of this paper.

Finally, Byzantine clients may undertake the attacks men-
tioned above in attempt to launch many speculative instances
in order to simply subvert the performance of AZyzzyva and
Aliph. To cope with this, we use a garbage collection mech-
anism; for lack of space, this is explained in [17].

Switching through replicas. Abstract switching is per-
formed through clients, who receive an abort indication con-
taining an unforgeable abort history. A possible alternative
design is switching through replicas. While the full formal
treatment of this alternative is beyond the scope of this paper,
it is possible to generalize Abstract interface to accommo-
date this. In short, the idea would use one or more arbiters,
processes (e.g., replicas) that would receive the full abort in-
dication with abort histories instead of a client, who would
receive a simple abort “signal”, without abort histories.

Dynamic switching. AZyzzyva and Aliph use static switch-
ing, i.e, a predetermined order in which Abstract instances
are switched among. Abstract specification envisions the
possibility of dynamical choice of the next Abstract in-
stance. This could lead to further performance improve-
ments: e.g., a dynamic switching scheme could sense the
current system conditions and switch to the seemingly most
appropriate Abstract instance. It is important to stress that a
prospective dynamic switching scheme would have to ensure
that the id of the next instance remains the same across all
abort indications of a given Abstract instance. While the dy-
namic switching is outside the scope of this paper, we high-
light this as the first item on the Abstract research agenda.

Failure independence. To maintain the assumption of a
threshold f of replica failures realistic, BFT systems need to
ensure failure independence. An established technique used
in ensuring failure independence is n-version programming
which mandates a different BFT implementation for each
replica, with the goal of reducing the probability of identi-
cal software faults across replicas. While Abstract does not
alleviate the need for n-version programming, this may re-
veal less costly and more feasible due to the inherently re-
duced code sizes and complexities involved with Abstract
implementations. In addition, abstractions like BASE [26],

that enable reuse of off-the-shelf service implementations,
can be used complementary to our approach.

6. Concluding remarks
In this paper, we introduced Abstract, a novel abstraction
that simplifies the design, implementation, testing and verifi-
cation of BFT protocols. In a sense, Abstract is an abortable
state machine that enables to build a BFT protocol as the
composition of as many (gracefully degrading) phases as
desired, each with a “standard” interface. These phases are
Abstract instances and each of them can be designed, imple-
mented, tested and proved independently. This allows for an
unpreceded flexibility in BFT protocol design that we illus-
trated with Aliph, a BFT protocol that combines three differ-
ent phases.

The idea of aborting if “something goes wrong” is old. It
underlies for instance the seminal two-phase commit proto-
col [16]: abort can be decided if there is a failure or some
database server votes ”no”. The idea was also explored in
the context of mutual exclusion: a process in the entry sec-
tion can abort if it cannot enter the critical section [19].
Abortable consensus was proposed in [9] and [4]. In the first
case, a process can abort if a majority of processes cannot be
reached whereas, in the second, a process can abort if there
is contention. The latter idea was generalized for arbitrary
shared objects in [3] and then [2]. In [2], a process can abort
and then query the object to seek whether the last query of
the process was performed. This query can however abort
if there is contention. Our notion of abortable state machine
replication is different. First, the condition under which Ab-
stract can abort is a generic parameter: it can express for
instance contention, synchrony or failures. Second, in case
of abort, Abstract returns (without any further query) what
is needed for recovery in a Byzantine context; namely, an
unforgeable history. This, in turn, can then be used to invoke
another, possibly stronger, Abstract. This ability is key to
the composability of Abstract instances.

Abstractions for Byzantine fault tolerance have been pro-
posed in a weaker adversarial model that assumes trusted
components that always remain beyond adversary control.
Such architectures (see e.g., [10]) limit, by construction,
the potential of the adversary to create deviations from the
“common” case. Intuitively, protocols designed using these
abstractions may handle Byzantine failures in a more effi-
cient manner. While BFT protocols that we present in this
paper do not assume such a weaker adversarial model, our
approach is orthogonal: it does not prevent trusted compo-
nents from being used in building Abstract instances.

Compositional approach to building BFT protocols is
also not new. Several examples of protocols distinguishing
an optimistic phase from a recovery one, were discussed in
the survey of Pedone [25]. Such a bimodal protocol was also
proposed in [22] in the context of Byzantine fault-tolerant
atomic broadcast, where the optimistic phase consists of



Bracha broadcast [5] and the recovery phase uses a prob-
abilistic multivalued Byzantine agreement protocol. Com-
position ideas were also used in the context of BFT state
machine replication, e.g., in HQ [13]. HQ is similar to the
construction of our AZyzzyva in a sense that its (“quorum-
based”) optimistic phase is followed by PBFT [7] as the re-
covery phase. However, these protocols lack the modularity
and the flexibility of Abstract: e.g., it is not trivial to reuse
the code and proofs of HQ or [22] while replacing optimistic
and/or recovery phase by a different protocol, nor is it clear
how to combine more than two phases. In contrast, we are
the first to clearly separate the phases and encapsulate them
within first class, well-specified, modules, that can each be
designed, tested and proved independently.

Several directions can be interesting to explore, like
using the concepts that underly Abstract in the context
of Byzantine-resilient storage [18], or the possibilities for
signature-free switching, to obtain practical BFT protocols
that do not rely on signatures [12]. Moreover, we believe that
an interesting research challenge lies in devising effective
heuristics for dynamic switching among Abstract instances.
While we described Aliph and showed that, albeit simple,
it outperforms existing BFT protocols, Aliph is simply the
starting point for Abstract. The idea of dynamic switching
depending on the system conditions seems very promising.
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